
EQUIVARIANT HOMOTOPY THEORY: PROBLEM SET 1

JUSTIN NOEL

(1) Suggested reading [DS95] and [Hov99, Ch. 1].
(2) Show that if C is a model category then C op is a model category.
(3) Suppose f is a cofibration in a model category C and the following diagram is a

pushout:

A B

C D

→ f

→
→ g

→
Show that g is a cofibration. State and prove the dual form of this result using the
previous exercise.

(4) Show that a Serre fibration (see [Hov99, §2.4]) f : E → B with fiber i : F → E and
B gives rise to a long exact sequence

· · ·→πn+1(B, f i(x)) ∂−→πn(F, x) i−→πn(E, i(x))
f−→πn(B, f i(x))→···→π0(E, i(x))→π0(B, f i(x)).

Here x ∈ F is an arbitrary basepoint. Hint: use the long exact sequence of a pair
F → E of spaces, if you have not seen this long exact sequence before, you can
find it in standard sources [Hat02, May99], although you should try to construct
it yourself.

(5) Show that every set X is |X |-small. Hint: you must use the definition of |X |-
filtered ordinal in an essential and obvious way.

(6) Find an example of a space X (necessarily not locally compact Hausdorff) such
that the functor X ×− does not preserve colimits.
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