
EQUIVARIANT HOMOTOPY THEORY: PROBLEM SET 6

JUSTIN NOEL

(1) Suggested reading: [May96, Ch. 16] for simplicial objects and the classifying space
construction, [McC01, Ch. 8bis] for group (co)homology with twisted and untwisted
coefficients.

(2) [May96, Ch. 16.1] Let X be a connected CW-complex, with π= π1(X ), and univer-
sal cover X̃ regarded as a π-space. Let M be an abelian group with trivial π-action.
Show that X̃ inherits the structure of a free π-CW complex and that

C∗(X ; M)∼= M⊗Z[π] C∗(X̃ ).

(3) Bonus: Prove the analogue of the previous result for M a local coefficient system
as well.

(4) [May96, Ch. 16.2] Use the first exercise to show

H∗(Bπ; M)∼=TorZ[π]
∗ (M,Z).

(5) Show that H∗(Bπ; M)∼=Ext∗
Z[π](Z, M).

(6) Bonus: Use the previous bonus problem to show the analogue of the previous
statement for twisted coefficients.

(7) When π= Cn = 〈g〉, use the periodic free resolution:

· · ·→Z[π]
1−g−−−→Z[π]

∑
gi

−−−→Z[π]
1−g−−−→Z[π] ε−→Z

to calculate the (co)homology (as a graded abelian group) with coefficients in Z and
Fp for each prime p. Here ε is the unique Z[π]-module map satisfying ε(g)= 1.

(8) Bonus: Suppose that 2|n. Let Z± be Z with Cn acting by g · 1 = −1. Use the
previous bonus problem and the above resolution to calculate H∗(BCn;Z±) and
H∗(BCn;Z±).

(9) Bonus: Use the Yoneda product in Ext ([Eis95, Exercise A.3.26-27]) and the pe-
riodicity of the resolution to find an exact sequence of length 2 representing a
generator in Ext2

Z[Cn](Z,Z). Show that under iterated products (given by gluing
sequences) this gives a polynomial generator and that H∗(BCn;Z)∼=Z[x]/(nx).

(10) Bonus: What happens when we do the previous exercise with Fp coefficients?
(Hint: Use the structure theorem for finitely generated abelian groups and the
homeomorphism B(G×H)∼= BG×BH to reduce to the case G = Cqi for some prime
q).

(11) Bonus: Use the Serre spectral sequence for the fibration

S1 pn

−−→ S1 → BCpn

to calculate the ring structure H∗(BCpn ;Fp) again.
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(12) Bonus: For abelian groups G, BG can be given the structure of a topological
abelian group. This makes H∗(BG;Fp) into a graded commutative ring (in fact,
a connected bicommutative Hopf algebra). When G = Cpn , what is this ring?

(13) Bonus: What happens in the previous exercise if we use Z coefficients?
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