LIE THEORY: PROBLEM SET 1

JUSTIN NOEL

- (1) Suggested reading [Lee03, Ch. I-3], [Kir08, Ch. 1-2], and potentially [Hsi00, Ch. 1–2]. (You are not expected to read all of these, but you might find it helpful.)
- (2) Show that if H < G is an open subgroup of a topological group G, then it is a closed subgroup.
- (3) Suppose that $F: M \to N$ is a smooth map between two smooth manifolds and $p \in M$. Show that the pushforward map

$$F_*: T_p M \to T_{F(p)} N$$

satisfies

(i) F_* is linear at any point of M.

- (*ii*) At any point of M, Id_{M*} is the identity matrix.
- (iii) For any composable sequence of smooth maps

 $M \xrightarrow{F} N \xrightarrow{G} P$

and a point p of M we have an equality

$$G_* \circ F_* = (G \circ F)_*.$$

(iv) If F is a diffeomorphism, then for any point of M, F_* is a linear isomorphism. (4) Let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by:

$$F(x, y) = (x^2 + 2xy + 3y, \cos x + \sin y + e^y, xy + 2x + 3).$$

Using the identity charts on the source and target and the standard bases $(\partial/\partial x, \partial/\partial y)$ and $(\partial/\partial u, \partial/\partial v, \partial/\partial w)$ calculate

- (*i*) F_* at (0,0).
- (*ii*) F_* at (1,2).
- (*iii*) F_* at (p_1, p_2) . What is the name of this matrix?
- (5) The goal of this exercise is to show det_{*} B at A is det(A)tr(A⁻¹B), where A \in $GL_n(\mathbb{K})$ and $B \in M_n(\mathbb{K})$.

 - (*i*) Show that $\sum_{i,j} A_{i,j} B_{i,j} = tr(A^t B)$. (*ii*) Show that $\frac{\partial}{\partial A_{i,j}} \det(A) = C_{i,j}$ where $C_{i,j}$ is the *i*, *j*th cofactor matrix obtained by taking the determinant of the matrix where we have deleted the *i*th row and *j*th column from A and multiplying by -1^{i+j} . The cofactors fit into a matrix C.
 - (*iii*) Use the previous calculation to determine $det_*(B)$ at A in terms of the cofactor matrix.
 - (*iv*) Use (5.*i*) and Cramer's rule: $A^{-1} \det(A) = C^t$ to show that $\det_*(B)$ at A is $\det(A)tr(A^{-1}B).$

LIE THEORY: PROBLEM SET 1

References

- [Hsi00] W.-Y. Hsiang, Lectures on Lie groups, Series on University Mathematics, vol. 2, World Scientific Publishing Co. Inc., River Edge, NJ, 2000. MR 1788014 (2002d:22001)
- [Kir08] Alexander Kirillov, Jr., An introduction to Lie groups and Lie algebras, Cambridge Studies in Advanced Mathematics, vol. 113, Cambridge University Press, Cambridge, 2008. MR 2440737 (2009f:22001)
- [Lee03] John M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003. MR 1930091 (2003k:58001)