LIE THEORY: PROBLEM SET 2

JUSTIN NOEL

- 1. Suggested reading the relevant parts of [Lee03, Ch. 3,5,12-14].
- 2. Suppose that $F: M \to N$ is a smooth map between smooth manifolds and that M is path-connected. Show that if for all $p \in M$, $F_*: T_pM \to T_{F(p)}N$ is 0 then F is constant.
- 3. Let *G* be a Lie group and $H \subset G$ a subgroup and an embedded submanifold. Then show that *H* is a closed Lie subgroup by completing the following exercises:
 - 3.1. Shot that the restrictions of the multiplication and inversion maps are smooth.
 - 3.2. Show that H is closed. Hints:
 - (i) Since *H* is locally euclidean to see it is closed it suffices to show that the limit point $g \in G$ of an arbitrary sequence $\{h_i\} \in H$ lies in *H*. Let $U, W \subset G$ be open neighborhoods of the identity such that $\overline{W} \subset U$ and $H \cap U$ is closed in *U*. Show that there is a neighborhood $V \subset G$ of the identity such that $v_1^{-1}v_2 \in W$ for all $v_1, v_2 \in V$.
 - (ii) Now $g^{-1}h_i$ is a sequence limiting to *e*. Taking *i* large we can assume $g^{-1}h_i$ is in *V*. Show that this implies $h_i^{-1}h_j$ is in *W*.
 - (iii) Now uses that $H \cap U$ is closed in U to see that $g^{-1}h_j \in H$ and hence $g \in H$.
- 4. Compute the Lie bracket structure on the Lie algebra $\mathfrak{m}(\mathbb{R})$ associated to $M_n(\mathbb{R})$.
- 5. Let U be an open neighborhood of the identity in a connected topological group G. Show that U generates (as a group) G. (Hint: Use an exercise from the last problem set).
- 6. Show every 1 dimensional Lie algebra is abelian, i.e., $[X,X] = 0 \forall X \in \mathfrak{g}$.
- 7. Show every 2 dimensional Lie algebra is either abelian or isomorphic to the following Lie algebra g generated by X, Y such that [X, Y] = Y.

References

[Lee03] John M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003. MR 1930091 (2003k:58001)