LIE THEORY: PROBLEM SET 3

JUSTIN NOEL

- 1. Suggested reading the relevant parts of [Lee03, Ch. 3,5,12-14].
- 2. Show that if G is an abelian Lie group then the Lie algebra associated to G is abelian. (Hint: Given a smooth function f on G and a left invariant derivation \tilde{X} associated to $X \in T_eG$, show that $\tilde{X}f$ is the smooth function which at g is $d/dt|_{t=0} f(g \cdot \gamma_X(t))$ and $\gamma: (-\epsilon, \epsilon) \to G$ satisfies $\gamma(0) = e$ and $\gamma'(0) = X$. Now compute [X, Y]f).
- 3. Identify the Lie algebras of U(n) and SU(n) respectively.
- 4. Show that every discrete normal subgroup of a connected Lie group is central (hint: consider the map $G \to N, g \mapsto ghg^{-1}$ where $h \in N$).
- 5. Show that the fundamental group of any Lie group is commutative.
- 6. Suppose that $F: G_1 \to G_2$ is a morphism of connected Lie groups which induces an isomorphism between their Lie algebras $\mathfrak{g}_1 \xrightarrow{\cong} \mathfrak{g}_2$. Show that F is a covering map and ker F is a discrete central subgroup.

References

[Lee03] John M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003. MR 1930091 (2003k:58001)