LIE THEORY: PROBLEM SET 7

JUSTIN NOEL

- 1. Show that the adjoint homomorphism $\operatorname{Ad}: SU(2) \to GL_3(\mathbb{R})$ from last week induces an isomorphism of Lie groups $SU(2) \rightarrow SO(3)$.
- 2. Let P_2 be the space of quadratic polynomials in x with coefficients in \mathbb{R} .
 - 2.1. Let $G = \mathbb{R}$ act on P_2 by $t \cdot f(x) = f(x+t)$. Show that this induces a homomorphism of Lie groups $G \to GL_3(\mathbb{R})$.
 - 2.2. Calculate the induced homomorphism on Lie algebras.
 - 2.3. Identify the previous homomorphism with the map sending kd/dt to $k d/dx|_{x=0}$.
 - 2.4. Use the exponential map to recover the Taylor expansion formula:

$$f(x+t) = \sum_{n\geq 0} \frac{t \, d/dx|_{x=0}}{n!} f.$$

- 3. Calculate det_{*}: $\mathfrak{gl}_n \mathbb{R} \to \mathfrak{gl}_1 \mathbb{R}$. 4. Show that det $(e^M) = e^{\operatorname{tr} M}$.

REFERENCES