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DENNIS BORISOV AND JUSTIN NOEL

Abstract. Derived smooth manifolds are constructed using the usual
homotopy theory of simplicial rings of smooth functions. They are
proved to be equivalent to derived smooth manifolds of finite type, con-
structed using homotopy sheaves of homotopy rings (D. Spivak), thus
preserving the classical cobordism ring. This reduction to the usual al-
gebraic homotopy can potentially lead to virtual fundamental classes
beyond obstruction theory.

1. Introduction

In [Sp10], Spivak constructed a category of derived manifolds and a no-
tion of cobordism for derived manifolds. Derived manifolds are one of many
possible generalizations of smooth manifolds. Approximately, derived man-
ifolds is the smallest simplicial category containing smooth manifolds, their
(possibly non-transverse) intersections, and countable unions. Intersections
are derived in the sense that they are homotopy pullbacks.

Spivak extended the cobordism relation to his derived category of mani-
folds and constructed the derived cobordism ring of a manifold. Although
derived manifolds include many non-manifolds, the theory is still close enough
to the classical situation to obtain a map from the derived cobordism ring
to the ordinary cobordism ring and this map is an isomorphism [Sp10,
Thm. 2.6].

The category of derived manifolds is constructed with some standard,
albeit technologically involved, homotopy theoretic machinery. Although we
leave these details to [Sp10] and the body of this paper, the reader should
keep in mind that a smooth manifold can be though of as a topological
space which admits a nice covering, paired with a (structure) sheaf of rings
satisfying certain properties, and that derived manifolds will be similarly
defined but with the structure sheaf replaced by a homotopical variant.

In many respects this is a perfectly good definition; we take a suitable
definition of smooth manifolds, and derive it in the standard way. This
methodology also works for other classes of structured spaces. Although
these new categories will have many desirable formal properties, it can be
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difficult to make computations. This situation may be unavoidable in gen-
eral, but in the case of (derived) smooth manifolds, we have a powerful tool
at our disposal: partitions of unity.

In classical differentiable geometry, the existence of partitions of unity
allows one to extend local constructions to global ones in a way that is typ-
ically impossible in the general theory of sheaves. This is a consequence
of manifolds being paracompact, Hausdorff, and equipped with a sheaf of
smooth functions (the structure sheaf) that is soft. The complete elimina-
tion of sheaf theoretic techniques is possible because the softness of structure
sheaves on classical manifolds remains true in the derived setting: every de-
rived smooth manifold of finite type1 (as defined in [Sp10]) is locally weakly
equivalent to a derived manifold, whose structure sheaf is a simplicial dia-
gram of soft sheaves.

This ability to express intersections homotopically correctly and functo-
rially, by using simplicial rings, instead of a homotopy sheaf of such rings,
potentially allows one to go beyond obstruction theories in working with
virtual fundamental classes.
Do you have a references where people use these obstruction theories for con-

structing virtual fundamental classes?

We will construct a sequence of algebraically defined full simplicial sub-
categories of the category of derived manifolds. Although these categories
are far from essentially surjective we will show in we use C∞-rings as the
basis for everything we do in smooth geometry. Such rings are just algebras
over a particular algebraic theory ([La63]), we recall the definition at the be-
ginning of Section 2. The theory of C∞-rings is well developed (e.g. [MR91],
[Du81], [GS03], [Jo11a], and many others).

Simplicial C∞-rings inherit a simplicial closed model structure from the
category of simplicial sets ([Qu67]), and it is this homotopy theory that we
use. We recall the definition in Section 3.

In [Sp10] weak equivalences are based on the notion of local weak equiv-
alence. Given a topological space X, one considers the category of sheaves
of simplicial C∞-rings, and defines local weak equivalence to be a map that
induces an isomorphism between the corresponding sheaves of homotopy
groups.

In contrast to the situation in algebraic geometry, local weak equivalences
in differential geometry can be treated in a very simple manner. Using
softness of structure sheaves, we prove that every derived manifold of finite
type is locally weakly equivalent to a derived manifold, whose presheaves
of homotopy groups are already sheaves. This implies that the functor of
global sections maps local weak equivalences to weak equivalences, and so we

1A derived manifold is of finite type, if it is possible to embed its underlying space into
Rn for some n ≥ 0.
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can go from sheaves to simplicial C∞-rings without loosing any homotopical
structure.

In [Sp10], instead of pre-sheaves of C∞-rings, pre-sheaves of homotopy
C∞-rings are used, which are not endowed with a point-set C∞-ring struc-
ture, but whose homotopy groups have this structure. The inclusion of
strict C∞ rings into homotopy C∞ rings is the right adjoint in a Quillen
equivalence of model categories ([Ba02], [Be06]). Thus we get the following
diagram of adjunctions:

What things are adjoint? Do you mean spaces equipped with a sheaf of C∞

rings? Probably not, but I’m not sure what you mean here. There is probably

an ’op’ on the bottom there. I would like to fill this out a bit more. I suspect

most of my issues in the introduction would be answered if this diagram and

the accompanying explanation was more complete.

(1.1) Sheaves of simplicial C∞-rings oo //
kk

Γ ++VVVVVVVVVVVVVVVVVVV
Spivak’s theory

Simplicial C∞-rings

where the categories in the first row come with local weak equivalences, the
third category has the usual weak equivalences. Assuming all manifolds are
of finite type, each functor maps (local) weak equivalences to (local) weak
equivalences. Moreover, all units and counits are (local) weak equivalences.

Going over to simplicial localizations of these categories, we conclude that
these adjunctions induce weak equivalences. In [Sp10] derived manifolds
are defined by gluing affine derived manifolds, which are just intersections,
computed as homotopy limits. Weak equivalences of simplicial localizations,
given by (1.1), show that all of this can be done in the category of simplicial
C∞-rings, using the usual closed model structure.

In Section 2 we describe the correspondence between C∞-spaces and C∞-
rings. Using softness of the structure sheaves, one proves that this is an
equivalence of categories. This material is standard, and we provide it
mostly to fix the notation.

There is no mention of germ determined, complete, etc.. here.

We extend these results in Section 3 to the simplicial case. We show
that the opposite of the standard model category of simplicial C∞-rings is
a model for
I don’t think you mean we ’glue’ along local weak equivalences. Gluing corre-

sponds to ordinary fibered products.

the category of simplicial C∞-spaces, where

isn’t the category of C∞ spaces defined here? What do you mean?

gluing is performed by local weak equivalences.
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I think it needs to be clearer here, what is the main category that we are com-

paring everything to

In Section 4 we recall the construction from [Sp10], and (assuming finite
type) prove that it provides a model for simplicial C∞-spaces. Thus [Sp10] is
reduced, via the category of simplicial C∞-spaces, to the usual construction,
involving homotopy colimits in the category of simplicial C∞-rings. This
correspondence, restricted to good fibrant replacements on the side of [Sp10],
is just the functor of global sections.

We would like to indicate some differences between the approach to de-
rived geometry adopted here, and other places. One can choose the under-
lying topological spaces to be spectra of the 0-th homotopy group or the
0-th component of the structure sheaf. We (and [Sp10]) use the former,
while [CK01],[CK02],[TV05],[TV08] use the latter. Note that it is impossi-
ble in the latter approach to define a notion of Spec which respects weak
equivalences.

In [Jo11b] another approach to derived manifolds is used, where instead
of sheaves of simplicial C∞-rings, one uses sheaves of presentations of C∞-
rings. We believe that constructions of [Jo11a] can be obtained from ours
by truncating simplicial sets from

Perhaps you can explain this to me. Our category has only non-degenerate

indecomposables in degrees 0 and 1.

level 2 and up. In particular, this would allow one to reformulate the
theory of [Jo11b] in terms of C∞-rings, and their modules. We will pursue
this elsewhere.

Acknowledgements: This work appeared as a result of Derived Differ-
ential Geometry Seminar at Max Planck Institute for Mathematics, in the
Summer-Fall, 2011. We would like to thank all the participants for many
fruitful discussions in and outside the seminar. The first author is especially
grateful to Barbara Fantechi and Timo Schürg for explaining the correspon-
dence between obstruction theory and transversality of derived intersections.

2. C∞-rings and C∞-spaces

Let C∞R be the category of product preserving functors

A : C∞ // Set,

where C∞ has {Rn}n≥0 as objects, and smooth maps as morphisms. Clearly,
any such A is determined (up to a unique isomorphism) by the set A(R)
and the action of {C∞(Rn)}n≥0 on A(R), making it into a C∞-ring. We
will write A to mean both the functor and the corresponding C∞-ring.

As an example consider a smooth manifold X, by which we will always
mean a Hausdorff, second countable space with a smooth finite dimensional
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euclidean atlas. The set of smooth functions on X is a C∞-ring, moreover
the assignment X 7→ C∞(X) is a full and faithful functor ([MR91, 3.1.4]).

Move definition of ideals to here, recall quotients and that Hadamard makes it

work. Explain why the quotient fields are never complex.

A C∞-ring A is local, if A has a unique maximal ideal m ⊂ A, and
A/m ∼= R. A typical example of a local C∞-ring is the ring of germs of
smooth functions at the origin of Rn.

A C∞-ring A is finitely generated if A is a quotient of C∞(Rn). Following
[MR91], we will denote the full subcategory of C∞R, consisting of finitely
generated C∞-rings, by L.

Note that via an embedding into Rn, the C∞-ring of smooth functions of
any finite dimensional smooth manifold is finitely generated.

would be nice to have notation for generators

For each a ∈ A ∼= C∞(Rn)/A, let the localization of A at a 6= 0,

A{a−1} = C∞(Rn+1)/(A, ax− 1)

where x generates the new factor. For any A ∈ L, spectrum of A is the pair
(Sp(A),OSp(A)), where

Sp(A) := HomL(A,R),

is a topological space with open sets

(2.1) Ua := {p : A→ R | p(a) 6= 0},

for each a ∈ A, and OSp(A) is the sheaf on Sp(A) associated to the presheaf

Ua 7→ A[a−1].
By choosing a presentation A ∼= C∞(Rn)/A, one can identify Sp(A) with

the functions on Rn that vanish on A. Since every open subset U of Rn has
a smooth function whose support is precisely U , ([MR91, lem. I.1.4]), Sp(A)
is a topological subspace of Rn, and every open subset of Sp(A) is of the
form (2.1). By comparing germs we see that OSp(A) is the pullback of the
sheaf of smooth functions on Rn via this inclusion.
I propose the previous sentence. Or some small change of it, to make it cor-

rect as a substitute for the next paragraph

Similarly, there is another description of OSp(A). Let ORn be the sheaf of
C∞-functions on Rn, and let a ⊆ ORn be subsheaf of

What is the definition of ideal sheaf? Do we really need this?

ideals, defined as follows:

f ∈ Γ(U, a) if and only if ∀p ∈ U, fp ∈ Ap.

The inclusion ι : Sp(A) ⊆ Rn is given by C∞(Rn)→ A, it is easy to see that

(2.2) OSp(A) ∼= ι∗(ORn)/ι∗(a),
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Why is the structure sheaf soft? I can see why this is true provided that the

inclusion Sp(A)→ Rn is closed.

and hence OSp(A) is soft, and its stalks are local C∞-rings.
Recall that a sheaf O on a space X is soft if for all closed subsets W ⊂ X

the restriction map on global sections Γ(X,O)→ Γ(O,W ) is surjective.

Recall nice properties of softness

You labeled this (internally) as Classical Definition. Is this definition used

elsewhere? Or are we presenting it for the first time. If so some justification

may be in order.

The definitions I have found for soft require paracompactness, although I don’t

see why this has to be part of the definition. We use this condition later, with-

out a condition that we are locally euclidean. It should follow from the embed-

ding result but I guess that will appear later.

Definition 2.1. A C∞-space is a pair (X,OX), such that

(1) X is a (paracompact?) Hausdorff topological space,
(2) OX is a soft sheaf of finitely generated C∞-rings on X,
(3) for each point p the stalk at p

(OX)p = colimp∈UOx(U)

is a local C∞-ring.

A morphism of C∞-spaces

(X,OX)→ (Y,OY )

is a pair (φ, φ]), where φ : X → Y is a continuous map, and φ] : OY →
φ∗(OX) is a morphism of sheaves of C∞-rings.

Note that the corresponding morphisms between stalks are automatically
local, since they are morphisms of local R-algebras, that have R as the
residue field. We will denote the category of C∞-spaces by G.

Note that we require the structure sheaf to be a sheaf of finitely generated
C∞-rings, that is our C∞-spaces are always of finite type, which is equivalent
to demanding that our space is embeddable into some Rn. It follows that
every C∞-space is paracompact, second-countable, and Hausdorff.

We will now show that Sp is right adjoint to Γ (cf. [Du81, Thm. 8]).
First note that as a subspace of Rn, Sp(A) is clearly Hausdorff, and since
the structure sheaf is pulled back from Rn it is local, if the inclusion of
Sp(A) into Rn is closed then since the closed subsets of Sp(A) come from
intersecting with closed subsets of Rn and the structure sheave on Rn is soft
we see OSp(A) is soft.

soft in the general case?
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Therefore (Sp(A),OSp(A)) ∈ G, and universal property of localization
gives us a functor

Sp : Lop → G, A 7→ (Sp(A),OSp(A)).
In general, it is not true that A ∼= Γ(Sp(A),OSp(A)). Consider the following

example: let A := C∞(R2)/A, where f ∈ A if f vanishes on some product

neighborhood of the y-axis. Then Γ(Sp(A),OSp(A)) = C∞(R2)/Ã, where Ã
is the ideal of functions that vanish in some (arbitrary) neighborhood of the

y-axis. Clearly A 6= Ã.
This example can be generalized. An ideal A ⊆ C∞(Rn) is called germ

determined,2 if

∀f ∈ C∞(Rn)− A, ∃p ∈ Rn s.t. fp /∈ Ap.

A C∞-ring A is germ determined, if A ∼= C∞(Rn)/A, with A being germ
determined. We will denote the full subcategory of L, consisting of germ
determined C∞-rings, by G. The inclusion G ⊂ L has a left adjoint, that

we will denote by A 7→ Ã. Explicitly: Ã ∼= C∞(Rn)/Ã, where Ã is the
germ determined ideal, generated by A. Proof of the following proposition
is straightforward (use (2.2)).

Proposition 2.2. If A is a finitely generated C∞ ring then Γ(Ua,OSp(A)) ∼=
Ã{a−1}.

Theorem 2.3. Let (X,OX) ∈ G, then Γ(X,OX) ∈ G. Moreover,

Sp : Gop � G : Γ

is an equivalence of categories.

Proof. Using the results above we see that Sp and Γ restrict to functors
between Gop and G. Since G is a full subcategory of L and G is a full
subcategory of L, it suffices to prove the adjunction between the larger
categories. This result plus the fact that Γ is represented by the C∞ space
R is precisely [Du81, Thm. 8]. Let (X,OX) ∈ G, using this adjunction and
Proposition 2.2, we see that Γ(X,OX) ∈ G and if A is germ determined,
Γ(Sp(A),OSp(A)) ∼= A.

Let A := Γ(X,OX). The only thing left to prove is that the canonical
map

(ι, ι]) : (X,OX)→ (Sp(A),OSp(A)),
is an isomorphism. This map takes a point x to the map evxA → R. First
we check surjectivity: Suppose that p : A→ R ∈ Sp(A) is not in the image.
First we note that p is always surjective and any map of R algebras lifts to
a C∞ map [MR91].

When p is injective A ∼= R and that X must be a point and X ∼= Sp(R).
So let mp be the non-trivial kernel of p.

2In [Du81] such ideals are called ideals of local character, we adopt the terminology
from [MR91].



8 DENNIS BORISOV AND JUSTIN NOEL

I’m having a hard time seeing this, since the ring is non-noetherian as a com-

mutative algebra-¿

Since Γ(X,OX) is finitely generated, all of its maximal ideals, having R as
the residue field, are finitely generated, and hence there are α1, . . . , αn ∈ mp

generating mp. If there was a point x such that ker evx ⊃ m then the
two ideals would be equal and p would be in the image. It follows that
α2
1 + . . .+ α2

n 6= 0 on X, contradicting the surjectivity of p.
To prove injectivity, we take any two distinct points x and y and find a

global section s such that evx(s) 6= evy(s). Since X is Hausdorff we can
find disjoint neighborhoods Ux and Uy of x and y respectively. So there is
a section Γ(x, y,OX) that is nonzero at x and zero at y. Using softness we
extend this to obtain our desired global section.

The inverse map takes the open set Ua to the set Va of x ∈ X such that
evx(a) 6= 0. By the representability result of Dubuc a corresponds to a
continuous map X → R and Va is the support of this map, hence open.

It suffices to check the isomorphism on structure sheaves after taking
germs at an arbitrary point p. Since OX is soft, A = Γ(X,OX)→ (OX)p is
surjective, and hence (OSp(A))p → (OX)p is surjective as well. Suppose that
a ∈ A, maps to 0 ∈ (OX)p, then it a vanishes in an open neighborhood U of
p Let b ∈ A, such that bp = 1p ∈ (OSp(A))p, bq = 0q ∈ (OSp(A))q ∀q ∈ X−U .
Then, clearly, (ab)q 7→ 0q ∈ (OX)q ∀q ∈ X, i.e., ab 7→ 0 ∈ Γ(X,OX).
Therefore ab = 0 ∈ A, and hence ap = 0 ∈ (OSp(A))p, so OSp(A) → OX is an
isomorphism. �

From Theorem 2.3 it is clear, that for a finitely generated C∞-ring, being
germ determined is equivalent to being geometric in the sense that it is
smooth functions on a C∞-space. The requirement to be finitely generated
is essential, since even the free C∞-ring C∞(RS), with S infinite, is not
isomorphic to Γ(Sp(C∞(RS)),OSp(C∞(RS))).

Yet, one has the notion of a germ determined C∞-ring also in the infin-
itely generated case ([Bo11]). In general, for A to be germ determined is
equivalent to A→ Γ(Sp(A),OSp(A)) being injective.

Why aren’t we considering fine sheaves? The locally complete case looks rela-

tively simple in terms of fine sheaves.

Surjectivity is more complicated. If Sp(A) is paracompact, it is enough
for A to be locally complete,3 which means for every set of elements {ai} such
that only finitely many ai are non-trivial in any neighborhood of a point,
then there is a global section which restricts to the sum of these elements
locally. Any finitely generated, germ determined C∞-ring is complete in this
sense, but not always true otherwise.

This definition immediately extends to modules over a C∞-ring, by which
we mean an ordinary module over the underlying commutative ring.

3In [Jo11a] this is called being complete with respect to locally finite sums.



DERIVED MANIFOLDS 9

We will denote the category of such A-modules by ModA. Since sheaves of
modules over soft sheaves of rings are themselves soft, we have the following
conclusion.
Do you want germ determined here (otherwise can we recover A from a non-

germ determined A? Quasicoherent sheaves?

Proposition 2.4. Let A be a finitely generated C∞-ring. The functor of
global sections defines an equivalence between the category of sheaves of
OSp(A)-modules and ModA.

3. Simplicial C∞-rings and simplicial C∞-spaces

The category of simplicial C∞-rings sC∞R, the category of simplicial
objects in C∞ rings.

Standard techniques show that sC∞R is a simplicial closed model cat-
egory, where weak equivalences and fibrations are those morphisms that
define respectively weak equivalences and fibrations between the underlying
simplicial sets [Qu67]. The forgetful functors to simplicial R-algebras and
R-modules reflect weak equivalences and homotopy groups can be calculated
in these underlying categories.

In particular, since each simplicial C∞-ring is a simplicial R-module, it is
enough to calculate homotopy groups at 0, and,

πk(A•, 0) ∼= Hk(M(A•)),

where M(A•) = (
⊕
Ak,Σ(−1)i∂k+1,i) is the Moore complex of A•.

Since πk preserves products πkA• is a C∞ ring and an R-module over
π0A•.

Let X be a topological space, and let O•,X be a sheaf of simplicial C∞-
rings on X. Let πk(O•,X) be the sheaf associated to the presheaf

U 7→ πk(Γ(U,O•,X)

By the comments above, π0(O•,X) is a sheaf of C∞-rings, and {πk(O•,X)}k≥1
are sheaves of π0(O•,X)-modules.

Perhaps the name sC∞ space is better, simplicial C∞-space makes me think of

a simplicial object in C∞ spaces.

Definition 3.1. A simplicial C∞-space is a pair (X,O•,X), where X is a
topological space, and O•,X is a sheaf of simplicial C∞-rings on X, and
(X,π0(O•,X)) is a C∞-space in the sense of Definition 2.1.

A morphism (X,O•,X) → (Y,O•,Y ) is given by a pair (φ, φ]•), where

φ : X → Y is a continuous map, and φ]• := {φ]k : Ok,Y → φ∗(Ok,X)}k≥0 is a
morphism of sheaves of simplicial C∞-rings. We will denote the category of
simplicial C∞-spaces by sG.
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3.1. Local weak equivalences. Given (X,O•,X) ∈ sG, we have a C∞-
space (X,π0(O•,X)) and a sequence {πk(O•,X)}k≥1 of sheaves of modules
on it. We will denote this C∞-space, together with the sheaves of modules,
by π•(X,O•,X). Every morphism

(φ, φ]•) : (X,O•,X)→ (Y,O•,Y )

in sG induces a morphism

π•(φ, φ
]
•) : π•(X,O•,X)→ π•(Y,O•,Y ).

We call (φ, φ]•) a local weak equivalence, if π•(φ, φ
]
•) is an isomorphism.

I dislike this name for two reasons. A ’local weak equivalence’ is a standard

term, it is usually just a weak equivalence of simplicial sheaves (over a fixed

base), which is a piece of the above definition. You are also including a home-

omorphism in the data. Second, this is not a local property (because of the

homeomorphism condition).

Let sL ⊂ sC∞R be the full subcategory, consisting of A•, such that π0(A•)
is a finitely generated C∞-ring. There is an obvious functor

Γ : sG→ sLop, (X,O•,X) 7→ Γ(X,O•,X).

In general Γ does not map local weak equivalences in sG to weak equivalences
in sLop. It does so for a particular kind of simplicial C∞-spaces, that we
are going to consider next.

Definition 3.2. A localized simplicial C∞-space is a C∞-space

This name is also a bit strange, because these spaces aren’t ’localized.’ Since

this is exactly the simplicial C∞ spaces that are locally ringed in the standard

sense. Why not call them locally ringed simplicial C∞ spaces.

(X,O•,X), where the stalks of O0,X are local C∞-rings. We will denote by

sG ⊂ sG the full subcategory, consisting of localized simplicial C∞-spaces.

Proposition 3.3. Let (X,O•,X) ∈ sG, then O0,X is a soft sheaf.

Proof. Since (X,π0(O•,X)) is a C∞-space, X is paracompact.

Note that this was not in the definition of C∞ space. If you required it there,

I think there are some more conceptual proofs of the results you stated.

By [Go60, Thm. II.3.7.2], to prove that O0,X is soft, it is enough to show
that it is locally soft, i.e., ∀p ∈ X there is a neighborhood U 3 p, such that
∀V1, V2 ⊆ U closed, with V1 ∩ V2 = ∅, there is α ∈ Γ(U,O0,X), such that
αV1 = 0, αV2 = 1.

Let p ∈ X, and let {fi}1≤i≤n be a set of generators of Γ(X,π0(O•,X))
as a C∞-ring. Since (O0,X)p → (π0(O•,X))p is surjective, there is a neigh-
borhood W 3 p, such that {fi|W }ni=1 are in the image of Γ(W,O0,X) →
Γ(W,π0(O•,X)). Choose a closed neighborhood U 3 p, such that U ⊆ W ,
we claim that U satisfies the conditions of theorem II.3.7.2 in [Go60].
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Indeed, since π0(O•,X) is soft, Γ(X,π0(O•,X))→ Γ(U, π0(O•,X)) is surjec-
tive, and hence Γ(U, π0(O•,X)) is generated by the images of {fi}ni=1. There-
fore Γ(U,O0,X) → Γ(U, π0(O•,X)) is surjective. We can choose a finitely
generated C∞-subring A ⊆ Γ(U,O0,X), such that A → Γ(U, π0(O•,X)) is
surjective. We claim that U ∼= Sp(A) as topological spaces.

Suppose not, surjectivity of A→ Γ(U, π0(O•,X)) implies that U ⊆ Sp(A)
as a closed subspace, hence Sp(A) − U is non-empty and open. Therefore,
∃a ∈ A, such that a 6= 0, aU = 0, when considered as a section of OSp(A).
Since A is finitely generated, ∃b ∈ A, such that ab = 0 and b(q) = 1 ∀q ∈ U .
Since (X,O•,X) is localized, b is invertible in Γ(U,O0,X), and therefore a = 0
as a section of O0,X , contradiction to A being a C∞-subring. So U ∼= Sp(A).

From U ∼= Sp(A) andA being finitely generated, we conclude that ∀V1, V2 ⊆
U closed, such that V1 ∩ V2 = ∅, there is α ∈ A, such that αV1 = 0, αV2 = 1,
where we consider α as a section of OSp(A). Since (X,O•,X) is localized, α
has the same properties, when considered as a section of O0,X . and βα = 0.
Now consider β as a section of O0,X . From β(a) = 1 we conclude that βq is
invertible, from βα = 0 we conclude that αq = 0. In the case of V2 we do
the same with α− 1. �

Let (X,O•,X) ∈ sG. Since O0,X is soft, all sheaves of boundaries in
M(O•,X) are soft as well, and hence (see e.g. [Go60], theorem II.3.5.2)

(3.1) ∀k ≥ 0 Γ(X,πk(O•,X)) ∼= πk(Γ(X,O•,X)).

This immediately implies the following proposition.

Proposition 3.4. The functor of global sections Γ : sG→ sLop maps local
weak equivalences to weak equivalences.

It might appear that localized simplicial C∞-spaces are very special. How-
ever, the following proposition shows that every simplicial C∞-space can be
localized, such that the result is locally weak equivalent to the original space.

Proposition 3.5. The inclusion sG ⊂ sG has a right adjoint. Unit of this
adjunction is an isomorphism, and counit consists of local weak equivalences.

Proof. Let (X,O•,X) ∈ sG, and let p ∈ X. The stalk (O0,X)p does not
have to be local, but (π0(O•,X))p is local. Therefore, since (π0(O•,X))p is a
quotient of (O0,X)p, we get a distinguished

p : (O0,X)p −→ R.

Let (O0,X)p be the localization of (O0,X)p at p, i.e., it is obtained by uni-
versally inverting every fp ∈ (O0,X)p, whose value at p is not 0. As usual
with C∞-rings, the natural map

(3.2) (O0,X)p → (O0,X)p

is surjective. We will denote kernel of (3.2) by tp. For an open U ⊆ X, we
will call a section α ∈ Γ(U,O0,X) trivial, if ∀p ∈ U αp ∈ tp. It is clear that
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all trivial sections together comprise a sheaf of ideals t ⊂ O0,X . It is easy to
check that ∀p ∈ X tp is exactly the set of germs of t at p.

We define
O•,X := O•,X/tO•,X ,

where the right hand side is taken in the category of sheaves of simplicial
C∞-rings, i.e., we first divide, and then sheafify. Proposition 3.9 gives the
middle isomorphism in

∀p ∈ X, (π0(O•,X))p ∼= π0((O•,X)p) ∼= π0((O•,X)p) ∼= (π0(O•,X))p,

and hence (X,O•,X) ∈ sG. Since stalks of O•,X are local C∞-rings, we have

that in fact (X,O•,X) ∈ sG. It is clear that (X,O•,X) 7→ (X,O•,X) extends

to a functor sG→ sG, and this functor is right adjoint to sG ⊂ sG.
If (X,O•,X) is localized, there are no non-zero trivial sections, and hence

unit of the adjunction is an isomorphism. Using Proposition 3.9 again, we
conclude that the map O•,X → O•,X is a weak equivalence stalk-wise, i.e.,
counit of the adjunction consists of local weak equivalences. �

Let Γ : sG → sLop be the composition of the localization functor sG →
sG and the functor of global sections Γ : sG → sLop. Propositions 3.4
and 3.5 imply that Γ maps local weak equivalences to weak equivalences.
Our next objective is to define a functor, going in the opposite direction.

3.2. Spectrum of a simplicial C∞-ring. Let A• ∈ sL, i.e., A• is a sim-
plicial C∞-ring, such that π0(A•) is finitely generated as a C∞-ring. We
define

Sp(A•) := Sp(π0(A•)).

Let U ⊆ Sp(A•) be open. For any p ∈ U we have an evaluation

p : A0 → π0(A•)
p−→ R.

Let U := {a ∈ A0 s.t. ∀p ∈ U, p(a) 6= 0}, we define A•{U−1} to be the
simplicial C∞-ring, obtained by universally inverting every a ∈ U , and its
degeneracies in A≥1. U = Sp(A•), we will write A• instead of A•{U−1},
and call it the localization of A•.

It is clear that U 7→ A•{U−1} is a presheaf of simplicial C∞-rings on
Sp(A•). Let O•,Sp(A•) be the associated sheaf.

Proposition 3.6. Let (Sp(A•),O•,Sp(A•)) be defined as above. Then

π0(O•,Sp(A•)) ∼= OSp(π0(A•)).

Proof. Recall that OSp(π0(A•)) is sheafification of the presheaf

U 7→ π0(A•){[U ]−1}, U ⊆ Sp(π0(A•)),
where [U ] ⊆ π0(A•) consists of those elements, that do not vanish at any
p ∈ U , i.e., U ⊆ A0 is the pre-image of [U ]. Therefore we have a canonical
A0{U−1} → π0(A•){[U ]−1}, and it obviously factors through π0(A•{U−1}).
the co-equalizer of A1{U−1} ⇒ A0{U−1}, but composed with A0{U−1} →



DERIVED MANIFOLDS 13

π0(A•){[U−1]}, these two maps become equal, since these compositions are
given by the universal property of localization, applied to A1 ⇒ A0 →
π0(A•). Using universal properties of localization and sheafification, we
arrive at

(3.3) π0(O•,Sp(A•))→ OSp(π0(A•)).
To prove that (3.3) is an isomorphism, we need to look at the stalks. Let p ∈
Sp(A•), then (OSp(π0(A•)))p ∼= π0(A•)/m

g
p, (O•,Sp(A•))p ∼= A•/m

g
pA•, where

mg
p ⊂ π0(A•), mg

p ⊂ A0 consist of elements that have 0 germs at respectively
p and p (see Proposition 3.8). Let k be the kernel of A0 → π0(A•). It is easy
to see that the left hand side of (3.3) is A0/k+mg

p, while the right hand side
is (A0/k)/m

g
p. It is straightforward to see that A0/k + mg

p = (A0/k)/m
g
p. �

The previous proposition implies that (Sp(A•),O•,A•) ∈ sG. Since con-
struction ofO•,Sp(A•) involves only inverting elements, it is clearly functorial.
Moreover, it is obvious that stalks of O0,Sp(A•) are local C∞-rings, so we have
a functor

Sp : sLop → sG, A• 7→ (Sp(A•),O•,Sp(A•)).
In general, it is not true that A• is weakly equivalent to Γ(Sp(A•),O•,Sp(A•)).
Even in the simple case when A• is a constant simplicial diagram if A• is
not germ determined, then A � Γ(Sp(A),OSp(A)).

A simplicial C∞-ring A• is geometric, if it is homotopically finitely gen-
erated and germ determined, i.e., if

(1) π0(A•) is a finitely generated, germ determined C∞-ring,
(2) ∀k ≥ 1, πk(A•) is a germ determined, locally complete π0(A•)-

module (see

change to exact reference

Section 2 for definition of local completeness).

Let sG be the full subcategory of sL, consisting of geometric simplicial
C∞-rings. If (X,O•,X) ∈ sG, from (3.1) we know, that for any k ≥ 0
πk(Γ(X,O•,X)) ∼= Γ(X,πk(O•,X)), and hence π0(Γ(X,O•,X)) is finitely gen-
erated, germ determined, and πk(Γ(X,O•,X)) are all germ determined, lo-
cally complete π0(Γ(X,O•,X))-modules. Therefore, the functor of global

sections Γ maps sG to sGop.

Proposition 3.7. The functor of global sections Γ : sG → sGop is left
adjoint to Sp : sGop → sG. Unit of this adjunction is an isomorphism, the
counit consists of weak equivalences.

Proof. Let (X,O•,X) ∈ sG, A• ∈ sG. Any morphism f• : A• → Γ(X,O•,X)
induces π0(f•) : π0(A•) → π0(Γ(X,O•,X)) ∼= Γ(X,π0(O•,X)), and hence a
continuous map φ : X → Sp(A•). Since stalks of O0,X are local, universal

property of localization implies that f• defines φ]• : O•,Sp(A•) → φ∗(O•,X).

Let A• be obtained by universally inverting every a ∈ A0, such that
p(a) 6= 0 for any p ∈ Sp(π0(A•)). From Proposition 3.8 we know that
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A• → A• is surjective, and hence, using universal property of sheafification

and proceeding as in the proof of Theorem 2.3, we conclude that f• 7→ (φ, φ]•)
is a bijective correspondence. It is clearly functorial, i.e., Sp is right adjoint
to Γ.

Suppose that A• = Γ(X,O•,X). Since π0(A•) ∼= Γ(X,π0(O•,X)), obvi-
ously X ∼= Sp(A•) as topological spaces. Then, since O0,X is soft, and its
stalks are local, one proves that O•,Sp(A•) ∼= O•,X as in Theorem 2.3. So the
unit of the adjunction is indeed an isomorphism.

Now we compare A• and Γ(Sp(A•),OSp(A•)). By Proposition 3.9 we know

that A• → A• is a weak equivalence. It remains to show that sheafification
preserves this homotopy type, i.e., that

γ : A• → Γ(Sp(A•),OSp(A•))

is a weak equivalence. We can assume that A• = A•. Let α ∈ M(A•)
be a cycle, such that γ(α) is a boundary. This implies that ∀p ∈ Sp(A•),
γ(α)p is a boundary in (O•,Sp(A•))p. From Proposition 3.8 we conclude that

(O•,Sp(A•))p ∼= A•/m
g
pA•, therefore we can construct β ∈ A0, such that αβ

is homologous to 0, yet p(β) 6= 0. This implies that α 7→ 0 in H•(M(A•))p.
Since this happens for every p, and we assume πk(A•) to be germ determined
∀k ≥ 0, α has to be a boundary itself.

Now let ξ ∈ Γ(Sp(A•),O•,Sp(A•)) be a cycle. Let p ∈ Sp(A•), then ξp ∈
(O•,Sp(A•))p ∼= A•/m

g
pA• is a cycle. It is easy to see that for any α ∈ A0,

whose support is contained in a small open set around p, αξp extends to
a cycle in A•. Therefore, using partition of unity, we can find a family of
cycles {βi} ⊆ A•, such that {γ(βi)} is locally finite and

∀p ∈ Sp(A•), Σ
i
(βi)p = ξp.i

Since ∀k ≥ 0, πk(A•) is locally complete, the corresponding family of ho-
mology classes {[βi]} adds to one class [β] ∈ H•(M(A•)). It is clear that
γ(β) is homologous to ξ. �

We have started with the category sG, and we were interested in the
simplicial localization of sG with respect to local weak equivalences. We
have constructed two adjunctions:

sG� sGop, sG� sG.

In each case the unit and counit consist of local weak equivalences (in the
case of sG, sG), or weak equivalences (in the case of sG). Therefore simplicial
localization of sGop, with respect to weak equivalences, is weakly equivalent
to simplicial localization of sG with respect to local weak equivalences.

We finish this section with technical results, that were used in some of
the propositions above.
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Proposition 3.8. Let A ∈ C∞R, and let I ⊂ A be an ideal, such that A/I
is finitely generated. Let V ⊆ Sp(A/I) be closed, and let

Λ := {a ∈ A s.t. ∀p ∈ V p(a) 6= 0}.4

Let AV be obtained by inverting every a ∈ Λ. Let S ⊆ A be a set of
generators. Then

AV ∼= C∞(RS)/A + mg
V ,

where A ⊂ C∞(RS) is the kernel of C∞(RS) → A, and mg
V ⊂ C∞(RS)

consists of functions, that have 0 germ at C∞(RS) → A → A/I
p→ R for

any p ∈ V .

Proof. Since A ⊆ A + mg
V , there is a canonical φ : A → C∞(RS)/A + mg

V .

First we prove that ∀a ∈ Λ φ(a) is invertible. Let ã ∈ C∞(RS) be any pre-
image of a. Since A/I is finitely generated, we can choose a finite F ⊆ S,
such that C∞(RF ) ↪→ C∞(RS) → A/I is surjective, and ã ∈ C∞(RF ). Let
VF be the image of V in RF . Since ã(p) 6= 0 ∀p ∈ V, using partition of unity

on RF , we can find b̃ ∈ C∞(RF ), such that ãb̃− 1 = 0 in a neighborhood of

VF . This implies that ãb̃ − 1, considered as an element of C∞(RS), has 0

germ in a neighborhood of every p ∈ V, i.e. ãb̃− 1 ∈ mg
V , and hence φ(a) is

invertible in C∞(RS)/A + mg
V .

Since φ is obviously surjective, for any A→ B, that inverts every a ∈ Λ,
there is at most one factorization through φ. To prove that at least one such
factorization exists, we construct χ : C∞(RS)/A+mg

V → AV , such that the
following diagram is commutative.

A
ψ0

~~~~~~~~~~
φ

&&NNNNNNNNNNNN

AV C∞(RS)/A + mg
Vχ

oo

To construct this χ, it is enough to show that kernel of C∞(RS) → AV
contains mg

V . Let ã ∈ mg
V , and choose a finite F ⊆ S, such that ã ∈

C∞(RF ), and C∞(RF ) → A/I is surjective, let VF be the image of V in
RF . By assumption, there is an open UF ⊇ VF , such that ã = 0 on UF .

Using paracompactness of RF , we can find b̃ ∈ C∞(RF ), such that b̃(p) 6= 0

∀p ∈ VF and supp(̃b) ⊆ UF . This means that ãb̃ = 0, yet the image of b̃ in
AV is invertible. Hence ã 7→ 0 ∈ AV . �

Proposition 3.9. Let A• be a simplicial C∞-ring, such that π0(A•) is
finitely generated and germ determined. Let A• be obtained by universally
inverting every a ∈ A0, such that p(a) 6= 0, ∀p ∈ Sp(π0(A•)). Then the
natural map φ• : A• → A• is a weak equivalence.

4Here p is the composition A→ A/I
p→ R.
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Proof. From Proposition 3.8 we know that A0
∼= A0/m, for some ideal m ⊆

A0. It is easy to see that A• ∼= A•/mA•.
Clearly mM(A•) is a subcomplex, and hence to prove the proposition it

is enough to show that mM(A•) is acyclic. Let k ≥ 0, and let β = Σ
1≤i≤n

biβi,

where bi ∈ m and βi ∈ Ak. Since π0(A•) is finitely generated, and there are
only finitely many of bi’s, one can use partition of unity to find a ∈ A0, such
that aβ = 0, yet p(a) 6= 0 ∀p ∈ V. The latter implies that the image of a in
π0(A•) is invertible (π0(A•) is assumed to be germ determined), and hence,
if β is a cycle, it is necessarily a trivial one.

Now assume there is α ∈ Ak+1, such that dα = β. Using partition of
unity again, we can find b ∈ m, such that bbi = bi for all 1 ≤ i ≤ n. �

4. Spivak’s construction

In this section we show that construction of derived manifolds, done in
[Sp10], can be equivalently performed in the category sL of simplicial C∞-
rings A•, such that π0(A•) is finitely generated.

The meeting point of Spivak’s construction and the usual homotopy the-
ory of simplicial C∞-rings is the category sG of simplicial C∞-spaces, de-
fined in Section 3. We start with recalling (and somewhat reformulating)
the constructions of [Sp10].

Let CG be the category of compactly generated Hausdorff spaces. We
define a category RS as follows:

(1) objects are pairs (X,O•,X), where X ∈ CG and O•,X is a functor

Open(X)op × C∞ → SSet,

(2) morphisms are pairs (φ, φ]), where φ : X → Y is a continuous map,
and φ] is a natural transformation

Open(Y )op × C∞
φ−1×Id //

��>>>>>>>>>>>>>>>>>>>>
Open(X)op × C∞

����������������������

φ]−→

SSet

For any fixed X ∈ CG, we will denote by RS(X) ⊂ RS the full subcategory
consisting of pre-sheaves on X. We equip each RS(X) with the injective
closed model structure, where O•,X → O′•,X is a weak equivalence or cofi-

bration, if O•,X(U,Rn)→ O′•,X(U,Rn) is respectively a weak equivalence or

cofibration of simplicial sets, ∀U ∈ Open(X), ∀n ≥ 0.
Since we have not required O•,X(U,−) : C∞ → SSet to be product pre-

serving, the natural maps

(4.1) O•,X(U,Rm+n)→ O•,X(U,Rm)×O•,X(U,Rn)
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are not required to be isomorphisms, and not even weak equivalences, i.e.,
O•,X is not necessarily a pre-sheaf of C∞-rings. Similarly, having a hyper-
cover {Ui} of U , the natural map

(4.2) O•,X(U,Rk)→ holim(O•,X(Ui,Rk))

does not have to be a weak equivalence, i.e., O•,X(−,Rk) is not necessarily
a homotopy sheaf of simplicial sets.

Since RS(X) is a left proper, cellular, simplicial closed model category,
one can perform a left localization of RS(X) with respect to (4.1) and (4.2)
[Hi09]. The result is a left proper, simplicial closed model category, that we
will denote by Shv(X). Moreover, any continuous map φ : X → Y induces
a Quillen adjunction

φ∗ : Shv(Y ) � Shv(X) : φ∗.

Homotopy sheaves of homotopy simplicial C∞-rings on X are the fibrant
objects in Shv(X). Every O•,X ∈ Shv(X) is cofibrant, and we will denote
by O•,X a chosen functorial fibrant replacement. For any U ∈ Open(X),
O•,X(U,−) is a homotopy C∞-ring, i.e., (4.1) is a weak equivalence ∀m,n ≥
0, and therefore we have a well defined sheaf of C∞-rings π0(O•,X), and a
sequence of sheaves of π0(O•,X)-modules {πk(O•,X)}k≥1.

A weak equivalence in RS is a morphism (φ, φ]) : (X,O•,X)→ (Y,O•,Y ),

such that φ is a homeomorphism, and φ] : O•,Y → φ∗(O•,X) is a weak
equivalence in Shv(Y ). Equivalently, we can demand that O•,Y → φ∗(O•,X)
is a local weak equivalence, i.e., it induces isomorphisms

πk(O•,Y )→ φ∗(πk(O•,X)), ∀k ≥ 0.

We will denote by RS the simplicial localization of RS with respect to
these weak equivalences. Presence of simplicial closed model structure on
each Shv(X) makes computing RS easier than usual.

Proposition 4.1. The category RS, together with the subcategory of weak
equivalences, admits a homotopy calculus of fractions.

Proof.
What exactly are you proving here?

Let (φ, φ]) : (X,O•,X)→ (Y,O•,Y ) be a weak equivalence in RS, we will

say that (φ, φ]) is a trivial cofibration or trivial fibration, if correspondingly
φ] is a trivial fibration or a trivial cofibration. Using the closed model
structure on Shv(Y ), it is obvious that every weak equivalence in RS can
be written as a composition of a trivial cofibration, followed by a trivial
fibration.
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Consider diagrams

(4.3) (X,O•,X)
(α,α]) //

(φ,φ])
��

(Y,O•,Y ) (Z,O•,Z)

(ψ,ψ])
��

(X ′, O•,X′) (W,O•,W )
(β,β])

// (Z ′, O•,Z′)

where (φ, φ]) is a trivial cofibration, and (ψ,ψ]) is a trivial fibration. It is
easy to see that

(Y,O•,Y
∏

α∗(O•,X)

(αφ−1)∗(O•,X′)), (W,O•,W
∐

β∗(O•,Z′ )

(ψ−1β)∗(O•,Z))

are the pushout and pullback respectively of (4.3). Since right Quillen func-
tors preserve trivial fibrations, and left Quillen functors

Which Quillen functors?

preserve trivial cofibrations, it is clear that pushout of (φ, φ]) is a trivial
cofibration, and pullback of (ψ,ψ]) is a trivial fibration. Using the 2-out-of-3
property, we see that, if in addition (α, α]), (β, β]) are weak equivalences,
their pushout and pullback are weak equivalences as well. Use [DK80a,
Prop. 8.2]. �

The same argument shows that any subcategory of RS, defined by putting
conditions on the sheaves of homotopy groups,

????????? There are weak equivalences in RS that are not weak equivalences,

even locally. These weak equivalences are not isomorphisms of homotopy

groups. I don’t see why any such subcategory would be closed under these op-

erations. I don’t see why a subcategory would admit functorial factorizations.

also admits a homotopy calculus of fractions. We are interested in the
following two subcategories:

• let LRS ⊂ RS be the full subcategory, consisting of pairs (X,O•,X),
such that the stalks of π0(O•,X) are local C∞-rings,
• let LRSfgs ⊂ LRS be the full subcategory of pairs (X,O•,X), such

that π0(O•,X) is a soft sheaf of finitely generated C∞-rings.
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As with RS, we will denote by LRS, LRSfgs the simplicial localizations
with respect to local weak equivalences. Since RS admits a homotopy calcu-
lus of fractions, we know that HomRS((X,O•,X), (Y,O•,Y ) is weakly equiv-
alent to simplicial set of hammocks of the following form:

(4.4) (X ′, O•,X′)

~~~~~~~~~~~~~~~~~~~~~~
//

��

(Y ′, O•,Y ′)

��
(X ′′, O•,X′′)

wwnnnnnnnnnnnn
//

��

(Y ′′, O•,Y ′′)

��
(X,O•,X) (Y,O•,Y )

__????????????????????

ggOOOOOOOOOOO

}}{{{{{{{{{{{{{{{{{

(X(n), O•,X(n))

bbDDDDDDDDDDDDDDDDD

// (Y (n), O•,Y (n))

where vertical arrows, and arrows going to the left are weak equivalences.
The same is true for LRS and LRSfgs. Since LRS, LRSfgs are full sub-
categories of RS, defined by a condition on weak equivalence classes, we
immediately have the following result.

Proposition 4.2. The inclusions

LRSfgs ⊂ LRS ⊂ RS

induce weak equivalences on the spaces of morphisms.

So far we have used only presence of a closed model structure on each
Shv(X). Now we will use these closed model structures are simplicial. For
any (X,O•,X), (Y,O•,Y ) ∈ RS we have a simplicial set∐

φ∈HomCG(X,Y )

∐
k≥0

HomShv(Y )(O•,Y ⊗∆[k], φ∗(O•,X)),

which we will denote by HomRS((X,O•,X), (Y,O•,Y )).

I believe the following result is immediate from standard techniques

Proposition 4.3. For any (X,O•,X), (Y,O•,Y ) ∈ RS there is a weak equiv-
alence of simplicial sets:

HomRS((X,O•,X), (Y,O•,Y )) ' HomRS((X,O•,X), (Y,O•,Y )).

Proof. Recall from the proof of Proposition 4.1, that (φ, φ]) : (X,O•,X) →
(Y,O•,Y ) is a trivial fibration, if φ is a homeomorphism, and φ] : O•,Y →
φ∗(O•,X) is a trivial cofibration. Since cofibrations in each Shv(X) are just
injective maps, it is easy to see that closing trivial fibrations in RS with
respect to the 2-out-of-3 property, produces all weak equivalences. Hence
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RS can be computed as simplicial localization of RS with respect to trivial
fibrations.

Proceeding as in the proof of Proposition 4.1, one sees that RS, to-
gether with trivial fibrations, admits a calculus of homotopy right frac-
tions ([DK80a], proposition 8.1). Therefore, HomRS((X,O•,X), (Y,O•,Y )
is weakly equivalent to simplicial set of hammocks of the following form:

(4.5) (Y ′, O•,Y ′)??

~~~~~~~~~~~~~~~~~~~~

��
(Y ′′, O•,Y ′′)77

nnnnnnnnnnn

��
(X,O•,X) (Y,O•,Y )

__????????????????????

ggOOOOOOOOOOO

}}{{{{{{{{{{{{{{{{{

(Y (n), O•,Y (n))
!!

DDDDDDDDDDDDDDDDD

where vertical arrows, and arrows going to the left are trivial fibrations.
Moreover, since nerves of equivalent categories are weakly equivalent, we
can assume that Y (k) = Y ∀k ≥ 1.

It is easy to see that in each such hammock, every path from X to Y
has the same underlying continuous map φ : X → Y , and hence we have a
decomposition of simplicial sets

HomRS((X,O•,X), (Y,O•,Y )) =
∐
φ

HomRS((X,O•,X), (Y,O•,Y ))φ.

Fix a φ, using functorial fibrant replacement in each Shv(X), we can assume
that all pre-sheaves in (4.5) are fibrant. Pushing everything forward to Y ,
we see (4.5) becomes a hammock between (Y, φ∗(O•,X)) and (Y,O•,Y ) in
Shv(Y ), and this correspondence is bijective, i.e. we have

HomRS((X,O•,X), (Y,O•,Y )) ' HomShv(Y )(O•,Y , φ∗(O•,X)),

where Shv(Y) is the simplicial localization of Shv(Y ) with respect to trivial

cofibrations. Finally, sinceO•,Y is cofibrant, and φ∗(O•,X) is fibrant, we have

HomShv(Y )(O•,Y , φ∗(O•,X)) '
∐
k≥0

HomShv(Y )(O•,Y ⊗∆[k], φ∗(O•,X))

Here we use [DK80b, Cor 4.7, Prop. 5.2]. �

In [Sp10] LRS is equipped with simplicial structure, which we will de-

note by L̂RS. We have seen now that L̂RS is weakly equivalent to LRS,
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that we have constructed here. Therefore, all constructions involving homo-

topy limits (e.g. derived manifolds), that one can perform in L̂RS, can be
equivalently performed in LRS.

Recall ([Sp10]) that an affine derived manifold is a homotopy limit (in

L̂RS) of a diagram

(4.6) R0

��
Rm // Rn

Since LRS ' L̂RS, we can use LRS instead. Moreover, if (X,O•,X) is the
homotopy pullback of (4.6), then π0(O•,X) is a soft sheaf of finitely generated
C∞-rings. Therefore affine derived manifolds lie in the full subcategory
LRSfgs ⊂ LRS.

Arbitrary derived manifolds in [Sp10] are defined by gluing affine ones.
So if we restrict to derived manifolds of finite type, i.e., (X,O•,X) such that
π0(O•,X) is a sheaf of finitely generated C∞-rings, we are still inside LRSfgs.

I do not understand any of the arguments that follow.

There is an obvious (full) inclusion

(4.7) sG ⊂ LRSfgs.

We claim that (4.7) induces a weak equivalence of simplicial localizations
(with respect to local weak equivalences). Indeed, any functor C∞ → SSet
can be rectified to a simplicial C∞-ring, i.e., it can be changed into a product

You have to be careful here as to what you mean by homotopy type here. It

is not an isomorphism of homotopy groups. Can this rectification be done re-

specting descent with respect to hypercovers?

preserving functor. Moreover, this process is functorial, and it preserves
homotopy type ([Be06]).

Let < sG >⊂ LRS be the full subcategory, consisting of sG and all pairs
(X,O•,X), such that O•,X is weakly product preserving and cofibrant in the

undefined, do you mean projective model structure on simplicial presheaves?

The simplicial localization won’t depend on which model structure you choose,

only on the weak equivalences.

projective closed model structure on RS(X). Then sG ⊆< sG > induces a
weak equivalence between simplicial localizations with respect to local weak
equivalences [Lu09, Lem. 5.5.9.9]. On the other hand, using a cofibrant
replacement functor LRS → LRS (with respect to the projective model
structures on RS(X)), we conclude that < sG >⊂ LRSfgs also induces a
weak equivalences between simplicial localizations.
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What results? How do we know this? What exactly are the homotopy limits

in these categories? Once you’ve simplicially localized simplicial C∞ spaces

I don’t think I understand what the mapping spaces are anymore (because it

is not clear that the objects we started with satisfied descent with respect to

hypercovers)

Altogether, using results of Section 3, we now know that taking homotopy

limit of (4.6) in L̂RS is equivalent to doing the same in sGop, or equivalently
in sLop, which has the usual (projective) closed model structure. Therefore:

Theorem 4.4. The simplicial category of derived manifolds of finite type,
as defined in [Sp10], is weakly equivalent to the full subcategory of sGop,
consisting of objects, that locally are homotopy pullbacks (computed as
homotopy pushouts in sL) of (4.6).

Definition 4.5. Given a smooth map f : Rn → Rm let Rf be the homotopy
pushout

Theorem 4.6. Every derived manifold is of the form Sp(A) where

A = eq

∏
i∈I

Rfi ⇒
∏
j∈J

Rfj
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