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H∞ 6= E∞

Justin Noel

Abstract. We provide an example of a spectrum over S0 with an H∞ struc-

ture which does not rigidify to an E3 structure. It follows that in the category
of spectra over S0 not every H∞ ring spectrum comes from an underlying

E∞ ring spectrum. After comparing definitions, we obtain this example by

applying Σ∞+ to the counterexample to the transfer conjecture constructed by
Kraines and Lada.

1. Introduction

In recent years there has been a renewed interest in the study of E∞ ring spectra
and their strictly commutative analogues, commutative S-algebras. Such spectra
are equipped with a well-behaved theory of power operations. This structure pro-
vides formidable computational tools which can be used to deduce a number of
surprising results (for some examples see [1, Ch. 2]).

Such operations determine and are determined by an H∞ ring structure, the
analogue of an E∞ ring structure in the stable homotopy category. The theory
of power operations is sufficiently rich that one might conjecture that every H∞
ring spectrum is obtained by taking an E∞ ring spectrum and then passing to the
homotopy category.

This turns out to be a stable analogue of the transfer conjecture, a conjectural
equivalence between the homotopy category of infinite loop spaces and a subcate-
gory of the homotopy category of based spaces whose objects admit certain transfer
homomorphisms (see [4] for a more complete description).

Kraines and Lada demonstrate the falsehood of the transfer conjecture by con-
tructing an explicit counterexample. In their paper, Kraines and Lada define the
notion of an L(n) space. When n = 2, this is a space equipped with transfer
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homomorphisms. They make use of the following implications

X is an infinite loop space =⇒ X is an E∞ space

⇐⇒ X is an L(∞) space

=⇒ X is an L(n) space

=⇒ X is an L(n− 1) space . . .

We can view lifting an L(n) structure to an L(n + 1) structure and so on as con-
structing an action of the E∞ operad up to increasingly coherent homotopy.

Theorem 1.1 ([4]). Let s be a generator of PrimH30(BU ;Z(2)). Define KL by
the following fibration sequence:

KL
i−→ BU(2)

4s−→ K(Z(2), 30).

Then i is a map of L(2) spaces, but the L(2) structure on KL does not lift to an
E3 structure. In particular, KL does not admit an E∞ structure compatible with
this L(2) structure.

After some translation we will prove the following theorem, which provides an
example in the category of H∞ ring spectra augmented over S0 whose H∞ structure
does not arise by forgetting an E∞ structure.

Theorem 1.2. The map

Σ∞+ KL
Σ∞+ i
−−−→ Σ∞+ BU(2)

is a map of H∞ ring spectra augmented over S0, but the H∞ ring structure on
Σ∞+ KL does not lift to an E3 structure. In particular, Σ∞+ KL does not admit a
compatible E∞ ring structure.

To prove this we will show that Σ∞+ takes L(2) spaces to H∞ ring spectra under
S0 and takes E∞ spaces spaces to E∞ ring spectra under S0. This comparison is
deduced immediately from some of the results in [6].

The author would also like to thank Peter May and the anonymous referee for
their helpful comments and suggestions concerning this paper.

2. L(n) spaces and spectra

Let L be the linear isometries operad. We will abuse notation and let L denote
the associated reduced monad on pointed spaces with Cartesian products, spaces
under S0 with smash products, and spectra under S0 with smash products.

In particular:

• L is an endofunctor on pointed spaces satisfying

LY =
∐
n≥0

L(n)×Σn Y
n/(∼),

where ∼ represents the obvious base point identifications.
• L is an endofunctor on spaces under S0 satisfying

LY =
∐
n≥0

L(n)×Σn Y
n/(∼),

where ∼ represents the obvious unit map identifications.
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• L is an endofunctor on the Lewis-May-Steinberger category of spectra (see
[5]) under S0 satisfying

LE =
∨
n≥0

L(n) nΣn E
∧n/(∼),

where ∼ represents the obvious unit map identifications (see [3, 4.9,6.1]).

We justify this abuse of notation with the following lemma:

Lemma 2.1 ([6, 4.8, p. 1027]). We have the following chain of isomorphisms
natural in based spaces1 X

Σ∞+ LX ≡ Σ∞(LX)+

∼= Σ∞L(X+)

∼= LΣ∞X+

≡ LΣ∞+ X.

For simplicity, for the remainder of this paper we will assume all spaces are non-
degenerately based and let e : Id → L and µ : L2 = LL → L denote the structure
maps of L.

Recall that the category of L-algebras in group-like pointed spaces is equivalent
to the category of infinite loop spaces. The following definition provides a categori-
cal filtration between spaces and homotopy coherent L-algebras (which are weakly
equivalent to L-algebras).

Definition 2.2. A based space X is L(n) if one can construct maps

fk : Ik × Lk+1X → X for k < n

such that

(1) the composite X
e−→ LX

f0−→ X is the identity,

(2) if tj = 0, fk(t1, . . . , tk, z) = fk−1◦(IdIk−1×Lj−1µLk−j)(t1, . . . , t̂j , . . . , tk, z),

(3) and if tj = 1, fk(t1, . . . , tk, z) = fj−1◦(IdIj−1×Ljfk−j)(t1, . . . , t̂j , . . . , tk, z).

Remark 2.3. Despite the similarity in notation, we remind the reader that the
property of being L(n) has nothing to do with the space L(n). We also note that
being En does not imply the space is L(n).

Remark 2.4. Note that our definition of a L(n) space is different from that of
a Qn space used in [4]. Kraines and Lada restrict to the case when X is connected,
in which case L could be replaced with Q = Ω∞Σ∞. In this respect, our definition
is more general.

We illustrate our definition with a sequence of examples (for more detailed
exposition and proofs see [4] or [2, V]).

Example 2.5.

(1) By definition, every based space is a L(0) space.
(2) A based space X is L(1), if the canonical map X → LX admits a retrac-

tion µX , which we can regard as the multiplication on X.

1It is helpful to think of this basepoint as the multiplicative unit.
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(3) A space X is L(2), if it is L(1) and we have a specified homotopy I ×
L2X → X between µXµ and µ(µ). In other words, X is an L-algebra in
the homotopy category of pointed spaces.

(4) In the case L is the monad associated to an operad, by a result of Lada
[2], X is L(∞) if and only if it admits an L-algebra structure. If the
components of X form a group under the induced multiplication, then X
is L(∞) if and only if it has the homotopy type of an infinite loop space.

There is an obvious analogue of the above definition with based spaces replaced
by spectra under S0, where L is the monad whose algebras are E∞ ring spectra
in this category [6, 6.2]. So we obtain an analogous categorical filtration between
spectra under S0 and E∞ ring spectra.

Applying this equivalence to the definition of L(n) spectra, we see that the
definition of an L(2) spectrum is precisely the definition of a H∞ ring spectrum
under S0 [1]. By Lemma 2.1 we see that applying Σ∞+ to the map

KL→ BU

of L(2) spaces constructed by Kraines and Lada we obtain a map of H∞ ring spectra
augmented over S0.

To see that Σ∞+ KL is not an E∞ ring spectrum we apply the argument of [4,
§8]. There they show that the Postnikov system for KL gives rise to a fibration
sequence:

KL≤29 → KL≤28 ' BU≤28
τ−→ K(Z/(4 · 15!), 30).

If KL were an infinite loop space, KL≤29 would be as well and the k-invariant would
be an infinite loop map. However they demonstrate that τ can not be delooped
twice to a multiplicative map and so the above Postnikov fibration can not be
delooped twice to a Postnikov system of A∞ spaces. As a consequence KL≤29

and KL fail to be E3 spaces and the corresponding suspension spectra fail to have
induced E3 structures.

References

1. R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, H∞ ring spectra and their applica-

tions, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR MR836132
(88e:55001)

2. Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces,

Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin, 1976. MR MR0436146 (55
#9096)

3. A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable

homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical
Society, Providence, RI, 1997, With an appendix by M. Cole. MR MR1417719 (97h:55006)

4. David Kraines and Thomas Lada, A counterexample to the transfer conjecture, Algebraic topol-

ogy, Waterloo, 1978 (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1978), Lecture Notes in
Math., vol. 741, Springer, Berlin, 1979, pp. 588–624. MR MR557187 (81b:55024)

5. L. G. Lewis, J. P. May, and M. Steinberger, Equivariant stable homotopy theory, Lecture Notes
in Mathematics, vol. 1213, Springer-Verlag, 1986.

6. J.P. May, What precisely are E∞ ring spaces and E∞ ring spectra?, Geometry & Topology
Monographs, vol. 16, arxiv:0903.2813, March 2009, pp. 215–282.

Max Planck Institute for Mathematics, Vivatsgasse 7, Bonn, Germany
E-mail address: justin@mpim-bonn.mpg.de


