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Abstract

The settings for homotopical algebra—categories such as simplicial groups, simplicial rings, A∞
spaces, E∞ ring spectra, etc.—are often equivalent to categories of algebras over some monad or
triple T. In such cases, T is acting on a nice simplicial model category in such a way that T descends
to a monad on the homotopy category and defines a category of homotopy T-algebras. In this setting
there is a forgetful functor from the homotopy category of T-algebras to the category of homotopy
T-algebras.

Under suitable hypotheses we provide an obstruction theory, in the form of a Bousfield-Kan spec-
tral sequence, for lifting a homotopy T-algebra map to a strict map of T-algebras. Once we have a
map of T-algebras to serve as a basepoint, the spectral sequence computes the homotopy groups of
the space of T-algebra maps and the edge homomorphism on π0 is the aforementioned forgetful func-
tor. We discuss a variety of settings in which the required hypotheses are satisfied, including monads
arising from algebraic theories and operads. We also give sufficient conditions for the E2-term to be
calculable in terms of Quillen cohomology groups.

We provide worked examples in G-spaces, G-spectra, rational E∞ algebras, and A∞ algebras.
Explicit calculations, connected to rational unstable homotopy theory, show that the forgetful functor
from the homotopy category of E∞ ring spectra to the category of H∞ ring spectra is generally neither
full nor faithful. We also apply a result of the second named author and Nick Kuhn to compute the
homotopy type of the space E∞(Σ∞+ Coker J,LK(2)R).
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1. Introduction

In the work of Ando, Hopkins, Rezk, and Strickland on the Witten genus [6, 7, 5] the authors first
construct a lift of the Witten genus to a multiplicative map of cohomology theories, then to an H∞
map (i.e., a map preserving power operations), and finally to an E∞ map

MString→ tmf .

In each of these steps they are asking that a map respects additional structure and it is natural to
ask if there are general techniques for constructing such liftings.

Their construction of an H∞ map makes use of ideas from Ando’s thesis [3, 4], where he defines
H∞ maps from complex cobordism to Lubin-Tate spectra using a connection to isogenies of Lubin-
Tate formal group laws. Their lift then arises from a computation: Since the H∞ condition can be
formulated in the stable homotopy category, a map is H∞ if and only if an associated sequence of
cohomological equations hold. The applicability of such techniques is one of the reasons that the
category of H∞ ring spectra is computationally more accessible. Although every E∞ map forgets to
an H∞ map, constructing E∞ maps is much more subtle and requires rather different techniques.

We construct an obstruction-theoretic spectral sequence to detect when an H∞ map can be lifted
to an E∞ map and other problems of this type. As a consequence of our approach we can also see how
much information is lost under the passage from E∞ to H∞ ring spectra. The first category can be
described as the category of algebras over a monad/triple T in a category of spectra while the second
is the category of such algebras in the homotopy category. Phrased in these terms, it is expected that
a great deal is forgotten in the passage from E∞ to H∞ ring spectra. But to date, there have been
no examples demonstrating this. Since our methods apply more generally to studying categories of
algebras over a monad T (satisfying some hypotheses), we set up our machinery in the more abstract
setting.

In Section 2 we provide a rapid review of the theory of monads and how they naturally encode
algebraic structures. We emphasize the examples coming from algebraic theories and from operads
since they make up the majority of our examples. In Section 3.1, we recall some conditions which
guarantee the existence of a simplicial model structure on the category of algebras over a monad.
These conditions are often satisfied and cover a broad range of standard examples. We include this
standard material so the reader can easily apply it to the application of their choosing.

Our first main result is:

Theorem A. Let C be a simplicial model category and T a simplicial Quillen monad (Definition 3.1)
acting on C . Let X and Y be T-algebras. Suppose that

a. T commutes with geometric realization and
b. X is resolvable with bar cofibrant replacement X̃ → X (Definition 3.18).

Let U : CT →C denote the forgetful functor from the category of T-algebras to C . Then T induces a
monad hT on hoC and there exists an obstruction-theoretic spectral sequence, called the T-algebra
spectral sequence, such that:
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1. Provided a T-algebra map ε : X →Y to serve as a base point, the spectral sequence conditionally
converges to the homotopy of the derived mapping space

πsπtC
d(T•U X̃ ,UY )=⇒πt−sC

d
T (X ,Y ).

2. In this case the differentials dr[ f ] provide obstructions to lifting [ f ] to a map of T-algebras.

3. The edge homomorphisms

π0C d
T (X ,Y )� E0,0

∞
,→ E0,0

2 = (hoC )hT (U X ,UY )

,→ E0,0
1 = hoC (U X ,UY )

are the corresponding forgetful functors.

4. If CT has functorial bar cofibrant and fibrant replacements, then the spectral sequence is con-
travariantly functorial in X and covariantly functorial in Y .

5. A map of simplicial monads T1 → T2 satisfying the above hypotheses induces a contravariant
map of spectral sequences provided that X has a bar cofibrant replacement X̃ → X in CT2 such
that U3 X̃ has a bar cofibrant replacement in CT1 .

This result will be proven in Section 4.1. Note that since we avoid using E2 model structures
or Bousfield localizations, we do not require any properness assumptions on our model category.
The assumption that our monad is simplicial Quillen is innocuous and satisfied in practice. The
remaining two assumptions guarantee convergence to the desired target and allow us to identify the
key terms in the spectral sequence.

Note that the convergence result in Theorem A is stronger than that of alternative approaches
found in the literature, e.g., using a Reedy cofibrant replacement of the bar resolution or taking
homotopy colimits instead of geometric realization. These approaches give spectral sequences which
converge to mapping spaces from a T-cocompletion of the source, as in [22, 13]. We combine some
standard results recalled in Section 3.2 with some crucial technical lemmas in Section 3.3 to prove
convergence without a cocompletion under the assumptions of Theorem A.

In Section 4.4 we show that these assumptions hold in many general cases of interest such as
nice categories of algebras over an operad, G-spaces and G-spectra (provided G is sufficiently nice),
and many algebraic categories such as simplicial groups and rings. In each of these examples, the
resolvability conditions hold for every object, so the spectral sequence can be applied to any pair of
objects in the category.

This spectral sequence is a special case of the Bousfield-Kan spectral sequence. Bousfield has
shown that this spectral sequence can be applied even without the existence of a base point—a useful
generalization since a space of T-algebra maps may well be empty. In this case there is an obstruction
theory (see Remark 4.4) for lifting a map in C to a map of T-algebras so that one can obtain a base
point [16, § 5]. The farther one can lift this base point up the totalization tower, the greater the range
in which one can define the spectral sequence and differentials.

As shown in Theorem 4.5, when the relevant mapping spaces in C have the homotopy type of
H-spaces, e.g., if C = Spectra, then one can choose these obstructions to land in the E2 page of the
spectral sequence. Under favorable circumstances we can then apply our second main theorem,
Theorem B of Section 4.3, to identify the E2 term with Quillen cohomology groups.
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We then demonstrate the wide applicability of this spectral sequence and its computability via
Theorem B through a number of examples in Section 5. The reader interested in applications is
encouraged to skip directly to this section where we compute the homotopy groups of particular:

• Spaces of equivariant maps in G-spaces and G-spectra (Section 5.1). This is a warm-up for the
other examples. In two examples, we explicitly analyze the forgetful functor from the homotopy
category of (strict) G-objects to (weak) G-objects in the homotopy category of spaces or spectra.

• Spaces of E∞ maps between function spectra (Section 5.2). In two examples arising from unsta-
ble rational homotopy theory, we show that the forgetful functor from E∞ to H∞ ring spectra is
generally neither full nor faithful. To the authors’ knowledge, these are the first such examples.

• Spaces of A∞ and E∞ self-maps of Hk-algebras, for k a suitable field, whose homotopy rings
are polynomial algebras.

• Spaces of E∞ maps from Σ∞+ Coker J to a K(2)-local E∞ ring spectrum (Section 5.3). This is a
result of Nick Kuhn and the second named author, and gives a nontrivial example of when the
set of H∞ maps coincides with the set of homotopy classes of E∞ maps. As a consequence of
the proof we obtain new information about Coker J, including its K(2)-homology:

K(2)∗Coker J ∼=
⊕
n≥0

K(2)∗BΣn.

Related work
The T-algebra spectral sequence arises by taking a functorial resolution of the source X . Namely

we replace X by the two sided bar construction B(FT ,T,U X ) where U is the forgetful functor CT →C

and FT is its left adjoint. For this approach, one wants general conditions under which the replace-
ment is cofibrant, weakly equivalent to X , and equipped with a suitable filtration for obtaining a
spectral sequence. A number of special cases of this theory are well known, and the arguments for
spaces and spectra can be found in the literature. Although the two-sided bar construction has been
a standard tool in homotopy theory for decades, we know of no reference in which its homotopical
properties are developed with sufficient breadth for our purposes. In Section 3.3 we develop new
tools for this purpose and apply them in Section 4.4 to demonstrate the applicability of the T-algebra
spectral sequence.

There are a couple of alternative methods for constructing maps of structured ring spectra. This
work can be considered an extension of the obstruction theory for maps of algebras in simplicial R-
modules and A∞ ring spectra that appears in Rezk’s thesis [43] and his presentation of the Hopkins-
Miller theorem [44] respectively. Indeed the latter work was a significant source of inspiration for
this project. Angeltveit [8] has also constructed an obstruction theory, which appears to be part of a
spectral sequence, for computing maps of A∞ ring spectra.

The Goerss-Hopkins spectral sequence also computes the homotopy of the derived mapping space
between two spectra which are algebras over a suitable operad, such as an E∞ operad [19, 20]. This
spectral sequence uses an E2 model structure which guarantees an algebraic description of the E2
term and is, in general, not the same as the T-algebra spectral sequence. In particular, their edge
homomorphism is generally a Hurewicz homomorphism which usually is distinct from the forgetful
functor above. In the sequel [39] however, the second named author shows that in special cases, such
as the worked examples in Section 5.2, the spectral sequences do agree and computations can be done
in either framework.
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When Theorem B does not apply, it is generally quite difficult to determine the E2 term of the
T-algebra spectral sequence. Indeed, when T is the monad associated to the E∞ operad, the main
results of [7, 4, 27] could be expressed as partial computations of d1 : E0,0

1 → E1,0
1 . The difficulties

here are generic: there are very few examples where Theorem B does not apply yet one still has
enough knowledge of the power operations to compute the E2 term explicitly.
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Conventions/Terminology
We will make the convention that a simplicial category is a simplicially enriched category which is

tensored and cotensored over simplicial sets. This convention is standard when discussing simplicial
model categories, but unusual in enriched category theory.

2. Algebras over a monad

This section reviews monads and their categories of algebras, focusing on examples and conditions
which ensure that limits and colimits in the categories of algebras exist. The existence of these
constructions is not automatic, but will be essential for the material in Section 3. We also show how
these constructions are computed in practice.

In Section 2.1 we begin with a familiar example, focusing on points which are key to the general
theory. A wealth of additional examples can be found in the framework of algebraic theories which
we recall in Section 2.2. In Section 2.3 we extend this discussion to the simplicially enriched context.
Finally we recall some relevant facts about operads in Section 2.4. In these last two sections we
introduce two of our primary classes of examples: Simplicial algebraic theories and operads.

2.1. Monadicity and categories of algebras
Given a set S we can form the free group FS on S whose underlying set consists of all finite

reduced words whose letters are signed elements of S. Multiplication is then defined by composing
words. We can also take a group G, forget its group structure, and regard it is as a set X =UG. These
constructions are clearly functorial and participate in an adjunction

Group
U
// Set

F
oo

where U is right adjoint to F. Let T = UF denote the endofunctor of Set given by the composite of
these two functors.
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The unit of this adjunction is a natural transformation e : Id → T given by taking an element of
a set to its associated word of length one. Using the underlying group structure on X =UG one can
multiply the elements in a word to obtain a structure map

µX : TX → X .

Alternatively we could construct this map by applying U to the counit

ε : FU → Id

of this adjunction. In particular, we have such a map for anything in the image of T and obtain a
natural transformation

µT : T2 → T.

The (large) category of endofunctors of Set admits a monoidal structure under composition and we
can see that (T, e,µT ) is an associative monoid in this category, in other words, T is a monad on Set .

In the case of X =UG we see that the map µX is compatible with this structure in the sense that
the two double composites of straight arrows in (2.1) are equal and each composite of a curved arrow
followed by a straight arrow is the identity morphism.

(2.1) TTX
µT

//

TµX

// TX
µX

//

eTX

zz

X

eX

{{

An object X ∈ Set with a map µX : TX → X satisfying these identities is called a T-algebra in Set . We
obtain a category Set T of T-algebras in Set by restricting to those set maps which commute with the
structure morphisms. To be explicit, the morphisms between two T-algebras (X ,µX ) and (Y ,µY ) are
those maps f : X →Y such that the following diagram commutes:

TX
T f
//

µX

��

TY

µY

��

X
f
// Y

or alternatively:

(2.2) Set T (X ,Y )= eq
[
Set (X ,Y )

(µY )∗◦T
//

µ∗X
// Set (TX ,Y )

]
.

The category of T-algebras in Set admits an obvious forgetful functor to Set and we saw above
that the forgetful functor U : Group → Set factors through Set T . It is not difficult to see that the latter
functor defines an equivalence of categories Group ' Set T . Indeed, if G is a group then we can see
that some of the maps in (2.1) can be realized by applying U to following diagram of groups:

(2.3) FTUG
εFU

//

FµUG

// FUG //

e

zz

G.
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The map on the right exhibits G as the coequalizer of the two straight arrows on the left. Moreover,
the map e exhibits this coequalizer as a reflexive coequalizer. In this sense we see that every group
has a functorial resolution by free groups. The forgetful functor from Set T to Set admits a left adjoint
FT which factors T as T =UFT . Similarly, we see that every T-algebra admits a functorial resolution
by free T-algebras. After forgetting down to Set these coequalizer diagrams become split coequalizer
diagrams [15, Lem. 4.3.3], i.e., diagrams of the form (2.1). Split coequalizer diagrams have the useful
property that they are preserved by all functors [14, Prop. 2.10.2].

Using these functorial resolutions and that a morphism of groups is an isomorphism if and only if
it induces an isomorphism between the underlying sets, we can see that the lifted functor U : Group →
Set T is essentially surjective. By applying the functorial resolution again and (2.2) one can now see
that this functor is full and faithful and Group ' Set T .

These arguments are completely general:

Theorem 2.4 (Barr-Beck/Monadicity). Any functor U : D →C which admits a left adjoint F lifts to a
functor to the category of T =UF-algebras in C . Moreover this functor is an equivalence of categories
if and only if

a. U is conservative, i.e., a map f in D is an isomorphism if and only if U f is.
b. For every T-algebra G, if U takes a pair of arrows of the form (2.3) to a split coequalizer, then

the pair of arrows in (2.3) admits a coequalizer which is preserved by U .

Proof. This version of the Barr-Beck theorem is a slight variation of [15, Thm. 4.4.4]. Here we assume
the existence of a left adjoint, which does not appear there, and our condition (b) is slightly weaker
than what is assumed there. But Borceux’s argument applies without change.

Theorem 2.4 can be used to identify many categories as categories of algebras over a monad.
Since we want CT to have an ample supply of colimits and limits for constructing model structures
we postpone introducing these examples for a moment so that we can record when such constructions
exist.

Proposition 2.5. [15, Props. 4.3.1, 4.3.2] Suppose T is a monad acting on C , then

1. The forgetful functor U : CT →C creates all limits.
2. The forgetful functor U : CT →C creates all colimits which commute with T in C .

Proposition 2.6. [18, Prop. II.7.4] Suppose C is cocomplete and T commutes with reflexive coequal-
izers, then CT is cocomplete and the forgetful functor creates all reflexive coequalizers.

Alternatively, if we suppose that C is bicomplete and T preserves κ-filtered colimits for some
regular cardinal κ then CT is bicomplete by [15, Prop. 4.3.6]. We often want T, or equivalently U ,
to preserve both filtered colimits and reflexive coequalizers (for some examples where this does not
hold see [15, § 4.6]). In such a case we can apply the following useful form of the Barr-Beck theorem
provided we restrict to locally presentable categories [15, § 5.2].

Proposition 2.7. Suppose U : D →C is a conservative functor between two locally presentable cat-
egories such that

a. U preserves limits,
b. U creates κ-filtered colimits for some regular cardinal κ,
c. and U creates reflexive coequalizers.
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Then U admits a left adjoint F, D is equivalent to the category of T = UF-algebras in C , and T
commutes with reflexive coequalizers and κ-filtered colimits.

The above results illustrate the importance of reflexive coequalizers and filtered colimits in CT .
These are particular examples of sifted colimits, which are colimits indexed over I such that the
diagonal map I → I ×I is final. Sifted colimits can also be characterized as those colimits which
commute with finite products in Set . One of the main results of [1, Thm. 2.1] is that if C is finitely
cocomplete then T commutes with all (κ-)sifted colimits if and only if T commutes with all reflexive
coequalizers and (κ-)filtered colimits.

2.2. Algebraic theories
Monads which commute with sifted colimits arise naturally in the study of algebraic theories in

the sense of Lawvere [32]. Recall that an (algebraic) theory is a category T equipped with a product
preserving functor i : FinSet op → T which is essentially surjective. If we let n ∈ FinSet op be a set
with n elements, then, since we are working in the opposite category, n ∼= 1×n. So T is equivalent to
a category whose objects are {i(1)n}n∈N. If C is a category with finite products, a T -model in C is a
product preserving functor A : T →C . The collection of T -models in C forms a category T -C whose
morphisms are natural transformations.

We should think of T as encoding the operations on an object of T -C . For example, suppose k is
a commutative ring and define a theory T as the subcategory of the opposite category of k-algebras
whose nth object i(n) is the free k-algebra k〈x1, · · · , xn〉.

Note that for each k-algebra A, we obtain a T -model in Set by

i(n) 7→ k-Alg (k〈x1, · · · , xn〉, A)∼= An.

Conversely, if A ∈T -Set we can identify A with the set A(i(1)) equipped with the operations encoded
by the functor A. For example, consider the maps in

T (i(2), i(1))∼= k-Alg (k〈x1〉,k〈x1, x2〉)

which send x1 to x1 + x2 and x1 · x2 respectively. These two maps define natural operations

(−)+ (−) : A(i(1))2 → A(i(1))

(−) · (−) : A(i(1))2 → A(i(1)).

The first map is commutative since x1 + x2 = x2 + x1, while the latter generally is not. By combining
maps in T we can see that the latter operation will distribute over the former. All of these operations
and their relations coming from T show that A(i(1)) is a k-algebra.

Example 2.8.

1. Let TGp be the category whose objects are indexed by natural numbers and whose morphisms
are

TGp(m,n)=Group (F{n},F{m}),

where F{m} is the free group on m elements, then TGp-Set is equivalent to the category of
groups.
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2. Let G be a group and let TG be the theory defined as in (1) but with

TG(m,n)=G-Set (F{n},F{m}),

where F{m} is the free G-set on m elements, then TG-Set is equivalent to the category of G-sets.
3. Let k be a commutative ring and TLiek be the theory defined as in (1) but with

TLiek (m,n)=Liek(F{n},F{m}),

where F{m} is the free Lie algebra over k on m elements, then TLiek -Set is equivalent to the
category of Lie algebras over k.

4. Let TC∞ be the theory defined as in (1) but with TC∞ (m,n) = C∞(Rm,Rn), the set of smooth
maps from Rm to Rn, then TC∞ -Set is equivalent to the category of C∞-rings [17, 38].

The list in Example 2.8 is far from comprehensive and is limited only by the authors’ imagination
and the readers’ patience.

If T is a theory, we obtain T -models T {m} in Set by setting T {m}(−)=T (i(m),−), which we can
think of as the free objects on a set of m-elements. This construction lifts to a (covariant!) functor
T {−} : FinSet → T -Set . Since Set is the closure of FinSet under sifted colimits, and sifted colimits
commute with products in Set we see that we can canonically prolong this to a functor from Set . This
functor admits a forgetful right adjoint given by evaluating at 1.

Just as in Section 2.1, we can compose these adjoints to obtain a monad T =UT {−} on Set . More
explicitly, the formula for the left Kan extension shows

(2.9) TX =
∫ n∈FinSet op

T (i(n), i(1))× X n.

Since T -Set is locally presentable with a conservative right adjoint U which creates sifted colimits
we can apply Proposition 2.7 and see that T -Set is equivalent to the category of T =UT {−} algebras
in Set .

Given a T-algebra X ∈T -Set we can consider the category (T -Set )↓X of algebras over X . Gener-
ally this can not be realized as the category of Set -valued models for an algebraic theory. However,
it can be realized as the category of models of a graded theory T ↓ X (see Example 2.11). This ad-
ditional generality will prove useful in the identification of the E2 term of the T-algebra spectral
sequence with Quillen cohomology groups in Theorem B (see Section 4.3).

Definition 2.10. For a set S of gradings, an S-graded theory T is a category T equipped with a
product preserving functor i : (FinSet S)op →T which is essentially surjective.

When working with graded theories, it is sometimes useful to use the isomorphism of categories

φ : FinSet S ∼=FS

where FS is the category whose objects are pairs (X , f ) where f : X → S is a map of sets with finite
fibers. Morphisms in FS are given by commuting triangles over S. For x = (xs)s∈S ∈ FinSet S , φ(x) =
(
∐

s xs,
∐

s fs) where each fs is the unique map of sets xs → {s}. Likewise, for (X , f ) ∈ FS , φ−1(X , f ) =
( f −1(s))s∈S .

Here are two prototypical examples of graded theories.

Example 2.11.
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1. Fix an abelian group M. The category of abelian groups over M is the category of (TAb ↓ M)-
models in Set where TAb ↓ M is a theory graded on the underlying set of M and is defined as
follows: The objects of TAb ↓ M are the objects of F

op
M . For each x = (xm)m∈M , let i(x) = φ(x) =

(X , f ) be the corresponding object of F
op
M and let FAbX be the free abelian group over M on

the elements of X , with structure map FAbX → M determined by the set map f : X → M. If
i(x)= (X , f ) and i(x′)= (X ′, f ) are two objects of TAb ↓ M, then we define

(TAb ↓ M)((X , f ), (X ′, f ′))=AbGroup↓M

(
FAbX ′,FAbX

)
.

2. The category of Z-graded abelian groups is the category of T Z
Ab-models in Set where T Z

Ab is
the Z-graded theory defined as follows: For j ∈ Z let Zt[ j] denote the free abelian group on t
elements concentrated in degree j. If i(t) and i(t′) are two elements of T Z

Ab with t = (t j) j∈Z, t′ =
(t′k)k∈Z ∈ (FinSetZ)op then we define

T Z
Ab(i(t), i(t′))=AbGroupZ

(⊕
k∈Z

Zt′k [k],
⊕
j∈Z
Zt j [ j]

)
∼=

∏
k∈Z

AbGroup
(
Zt′k [k],Ztk [k]

)
.

The theories in Example 2.8 can all be extended to the graded case similarly and in general
overcategories coming from graded theories are graded theories.

Remark 2.12. The evaluation operation on the category of models in Set of an S-graded theory T

defines a forgetful functor to Set S ∼=∏
S Set . This functor is finitary (meaning it preserves countable

filtered colimits) and monadic (meaning it satisfies Theorem 2.4) with associated monad T, so the
category of T -models in Set is equivalent to the category of T-algebras in Set S .

This construction is part of a correspondence demonstrated in [2, App. A] between categories of
Set -valued models over S-graded theories and finitary monadic categories over Set S . Their results
can in turn be used to show a correspondence between the latter and algebraic categories in the sense
of [40, 41].

The following result will help us in Proposition 3.5 connect the machinery of algebraic theories to
Quillen cohomology.

Proposition 2.13. Let T be a graded theory and X a T -model in Set . Let T ↓ X be the S-graded
theory whose category of models is (T -Set )↓X , the category of objects over X in T -Set . Then there
is an S-graded theory (T ↓ X )ab such that the category of (T ↓ X )ab-models in Set , (T ↓ X )ab-Set , is
equivalent to the category of abelian group objects in (T ↓ X )-Set .

These two categories are monadic over Set S with associated monads (T↓ X )ab and T↓ X . The
forgetful functor

Set S
(T↓X )ab

→ Set S
T↓X

is monadic with left adjoint Ab.

Proof. We have already noted that the category of models over X is a graded theory. Let S denote the
grading for this theory. As a consequence of [15, Thm. 3.11.3] the category of abelian group objects
in the category of models for a theory is a category of models for a new theory. As noted in [12, § 3.3]
this argument passes to the S-graded case, mutatis mutandis, to yield an S-graded theory for the
abelian group objects.

These are both locally presentable categories. Since the forgetful functor is conservative and
limits and sifted colimits in these categories are both calculated in Set S we can apply Proposition 2.7
to complete the proof.
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2.3. Simplicial categories of T-algebras
The theory of T-algebra limits and colimits from Section 2.2 admits a straightforward extension to

the enriched context. Since we are interested in studying the space of maps between two T-algebras,
modeled as a simplicial set, we give this extension in the case that C is a simplicial category.1 To
obtain categorical information analogous to the previous section we will replace all of our categories
with simplicial categories, all of our functors with simplicial functors, and all of our natural trans-
formations with simplicial natural transformations. For general background on enriched categories
and functors between them the reader is encouraged to consult [15, § 6.2] or [29].

Recall that we require a simplicial category C to have a tensor bifunctor

⊗ : sSet ×C →C .

This is related to the simplicial mapping functor C (−,−) and the simplicial cotensor (−)− via natural
adjunction isomorphisms

sSet (K ,C (C,D))∼=C (K ⊗C,D)∼=C (C,DK ).

Proposition 2.14. Suppose that

a. C is a bicomplete simplicial category.
b. T is a simplicial monad acting on C .
c. T commutes with either

(i) reflexive coequalizers or
(ii) filtered colimits.

Then CT is a bicomplete simplicial category such that

1. The forgetful functor CT →C creates limits and cotensors.
2. The simplicial tensor is constructed as follows:

(2.15) K ⊗T X = coeq
[
FT (K ⊗TU X )

FT (K⊗µ)
//

α
// FT (K ⊗U X )

]
.

FT (K⊗e)

ww

Here α : FT (K ⊗TU X )→ FT (K ⊗U X ) is adjoint to the assembly map K ⊗TU X → T(K ⊗U X ).

Proof. First we check that CT is bicomplete: By Proposition 2.5 CT is complete and U creates limits.
Under hypothesis (c.i) we can apply Proposition 2.6 to see that CT is cocomplete. When hypothesis
(c.ii) holds, cocompleteness follows from [15, Prop. 4.3.6].

The hom spaces of CT are defined by taking the equalizer, in sSet , of the the obvious analogue of
(2.2). The fact that U creates cotensors appears in [18, Prop. VII.2.10]. In order for the adjunctions
to hold the tensor must be defined by (2.15).

1Although we will normally distinguish between topological spaces and simplicial sets, we will refer to both as spaces in the
case of mapping objects. We justify this abuse by noting that we are primarily interested in derived mapping spaces, which
are only homotopy types, so it is not necessary to distinguish between the choice of model.
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Note that under the hypotheses of Proposition 2.14, if T commutes with reflexive coequalizers we
can compute (2.15) in C by Proposition 2.5.

Graded algebraic theories are extended similarly to the simplicial context: Regarding the category
of finite sets as a simplicially enriched category with discrete mapping objects, a simplicial algebraic
theory is just a product preserving functor (FinSet S)op → T to a simplicially enriched category T

which is essentially surjective. Similarly, a T-model in a simplicially enriched category C with finite
products is just a product preserving simplicial functor T →C .

Example 2.16. Each of the examples listed in Example 2.8 and their graded counterparts natu-
rally defines a simplicial theory. The T -models in simplicial sets are equivalent to their simplicial
analogues.

Proposition 2.17. Let T be the simplicial monad acting on sSet S associated to an S-graded simpli-
cial algebraic theory T . Then the category sSet S

T of T-algebras is a bicomplete simplicial category
with tensor defined by (2.15).

If S = ∗ and T is an ordinary theory regarded as a constant simplicial theory then for each
K ∈ sSet and X ∈ sSet T we have the identification

(K ⊗ X )n =
T -Set∐
k∈Kn

Xn.

2.4. Monads from operads
A symmetric sequence in sSet is a sequence

C = {C(n)}n≥0

where C(n) is a simplicial set with a right Σn-action. A map of symmetric sequences is a levelwise
equivariant map.

For the remainder of this section we assume that C is simplicial symmetric monoidal category
with tensor ⊗ such that:

a. ⊗ distributes over countable coproducts in C and
b. there is a symmetric monoidal functor i : sSet → C , such that the tensor of a space K and an

object X of C is defined by iK ⊗ X .

Now given a symmetric sequence C, we have an associated functor TC : C →C defined on objects
by

(2.18) TC(X )= ∐
n≥0

C(n)⊗Σn X⊗n ∼=
∫ n∈IsoSet

C(n)⊗ X⊗n.

A map of symmetric sequences yields a natural transformation of functors, and this construction
yields a functor from symmetric sequences to endofunctors of C .

There is a symmetric monoidal product on symmetric sequences, which we will also denote by ⊗:

(C⊗D)(n)= ∐
i+ j=n

C(i)×D( j)×Σi×Σ j Σn

Since the symmetric monoidal structure on C distributes over coproducts we see:

TC ⊗TD ∼= TC⊗D .

13



Now we define the circle product by:

(C ◦D)(n)=
(∐

i≥0
C(i)×Σi D⊗i

)
(n).

This is part of a monoidal structure on symmetric sequences such that the construction C 7→ TC
defines a monoidal functor to the category of endofunctors with composition product. An operad O is
a symmetric sequence which is a monoid for the circle product; the associated endofunctor is then a
monad (see [44, § 11] for additional details).

Remark 2.19. The category of operads in sSet can be constructed as the category of sSet -valued mod-
els for a graded simplicial algebraic theory. As in [43, App. A] one can construct the free monoid with
respect to the circle product on a symmetric sequence. Regarding the Σn-set Σn × i as a symmetric
sequence concentrated in degree n (and the empty set elsewhere), we can apply this free construction
to the symmetric sequences {Σn × i}(n,i)∈N×N to define an N-graded algebraic theory whose algebras
are operads in Set . The category of simplicial operads is the associated category of models in sSet .

The following standard result gives criteria for identifying when the category of algebras over an
operad is simplicially enriched.

Proposition 2.20. Suppose that C is a bicomplete simplicial symmetric monoidal category such
that:

a. There is a symmetric monoidal functor i : sSet →C defining the simplicial tensor.
b. The monoidal product in C commutes with countable coproducts and either

(i) reflexive coequalizers or
(ii) filtered colimits.

Then for any operad O of simplicial sets, the category of O-algebras in C is a bicomplete simplicial
category.

The hypotheses concerning colimits for this proposition hold whenever the symmetric monoidal
structure comes from a closed symmetric monoidal structure and hence distributes over all colimits.
For example, simplicial sets, simplicial abelian groups, and simplicial R-modules all satisfy the condi-
tions of Proposition 2.20 with their respective closed symmetric monoidal structures. The categories
of pointed compactly generated weak Hausdorff spaces or pointed simplicial sets, each equipped with
the smash product, satisfy these conditions. Any of the standard closed symmetric monoidal cate-
gories of spectra also satisfy the hypotheses.

3. Homotopy theory of T-algebras

In Section 3.1 we recall conditions that guarantee that the category of T-algebras has a suit-
able homotopy theory. After establishing the existence of a model structure, we construct functorial
simplicial resolutions of algebras in Section 3.2 which are used in the construction of the T-algebra
spectral sequence.

Here, we choose to work in the context of simplicial model categories. A disadvantage of this
approach is that some of our assumptions—most notably the existence of colimits/limits and the
standard issues concerning cofibrancy and fibrancy—should not be strictly necessary (see for example
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[34, § 6.2]). An advantage of this approach is that the theory is well-developed, well-understood, and
relatively straightforward to apply to many categories of interest.

We have gathered the relevant results from the literature in the interest of having a single ref-
erence for determining whether a category of T-algebras admits a simplicial model structure. The
background material for this section can be found in [40, 25, 23] or the appendices of [33].

3.1. Model structures on T-algebras
Let C be a simplicial model category and T a simplicial monad acting on C . We will now recall

conditions which guarantee the simplicial structure on CT is part of a simplicial model structure
[40]. Such model categories M satisfy the following two equivalent forms of Quillen’s corner axiom.

SM7: Given any cofibration f ∈ sSet (K ,L) and fibration g ∈M (A,B) , the induced morphism

AL −→ AK ×BK BL

is a fibration, which is a weak equivalence if either f or g is.

SM7a: Given cofibrations f ∈ sSet (K ,L) and g ∈M (A,B), the induced morphism

K ⊗B
∐

K⊗A
L⊗ A −→ L⊗B

is a cofibration, which is a weak equivalence if either f or g is.

Definition 3.1. Let C be a (simplicial) model category. A (simplicial) monad T acting on C is (sim-
plicial) Quillen if

a. CT has a (simplicial) model structure such that the forgetful functor U : CT →C is a (simplicial)
right Quillen functor.

b. A map f of T-algebras is a weak equivalence if and only if U f is a weak equivalence.

A convenient way to show that T is (simplicial) Quillen is to induce a (simplicial) model structure
on CT via FT . We can do this if C is a cofibrantly generated (simplicial) model category and T satisfies
some mild hypotheses. In this case C has sets of generating cofibrations I and acyclic cofibrations
J which are used to detect acyclic fibrations and fibrations respectively. These sets of maps satisfy
smallness hypotheses which are used to apply Quillen’s small object argument and prove the lifting
axioms.

Suppose that C is a model category and a functor

U : D →C

admits a left adjoint. Then we say that U right induces a model structure on D if D admits a model
structure such that a map f is a fibration (resp. weak equivalence) if and only if U f is a fibration
(resp. weak equivalence).

Theorem 3.2 (Cf. [48, App. A Thm. 1.4]). Suppose that C is a cofibrantly generated simplicial model
category with generating (acyclic) cofibrations I (resp. J) and T =UFT is a simplicial monad acting
on C satisfying Proposition 2.14.

If the domains of FT I (resp. FT J) are small relative to FT I-cells (resp. FT J-cells) and applying U
to any FT J-cell complex yields a weak equivalence in C then U right induces a cofibrantly generated
simplicial model category structure on CT .
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Remark 3.3. In practice, checking the smallness conditions is relatively easy. In fact, it is automatic
when the underlying categories are locally presentable. So most of the work required to apply The-
orem 3.2 involves checking that applying U to an FT J-cell complex yields a weak equivalence. This
can be verified (see [46, Lem. B2]) by showing the following two properties are satisfied.

1. There is a ‘fibrant replacement’ functor Q : CT →CT and a natural transformation Id→Q such
that for all X ∈CT , the natural map U X →UQX is a fibrant replacement.

2. If U X is fibrant then applying U to the canonical factorization X → X∆1 → X∂∆1 ∼= X × X of the
diagonal yields a weak equivalence followed by a fibration.

In our setup, the second property follows from the fact that U preserves cotensors and C is a simpli-
cial model category. To verify the first property one can sometimes show that the fibrant replacement
functor C lifts to an endomorphism of CT . This is automatic if every object is fibrant in C . Since
the two fibrant replacement functors Ex∞ and Sing∗| − | on simplicial sets are product preserving
we can use either of them as fibrant replacement functors for the category of simplicial T-algebras
associated to a (graded) theory.

Proposition 3.4 (Cf. [47, Thm. 3.1]). If T is the monad associated to a (graded) algebraic theory on
simplicial sets (such as, e.g., those in Example 2.16 or Remark 2.19), then T is simplicial Quillen.

Proposition 3.5. Let T be a graded theory and X a model in sSet for this theory. Let B be the
category of T -models over X in sSet . Then there is an S-graded theory whose models in sSet , which
we will denote by A, is equivalent to the category of abelian group objects in B.

These two categories are monadic over sSet S with associated monads TA and TB and the forgetful
functor

ι : sSet S
TA

→ sSet S
TB

is monadic with left adjoint Ab. Its associated monad is simplicial Quillen.

Proof. The argument from Proposition 2.13 proves the claims about the underlying categories. We
just need to check that ι is a right Quillen functor (it is obviously simplicial). In both categories a
map is a weak equivalence (resp. fibration) if and only if it is a weak equivalence (resp. fibration) in
sSet S . Since the forgetful functor sSet S

TA
to sSet S factors through ι the result follows.

Definition 3.6. Given a simplicial model category C we define the derived mapping space

C d(X ,Y )=C (X c,Y f )

where X c is a cofibrant replacment of X and Y f is a fibrant replacement of Y . We now define

hoC (X ,Y )=π0C d(X ,Y ).

It follows easily from Axiom [SM7] that the derived mapping space is well-defined up to weak
equivalence and therefore hoC (X ,Y ) is well-defined. That this definition agrees with other construc-
tions of the set of homotopy classes of morphisms, and that these hom-sets assemble into a homotopy
category hoC can be found in [21, Prop. II.3.10 + § II.3].

Proposition 3.7. Suppose that the forgetful functor U : CT →C is a simplicial Quillen right adjoint.
Then the monad T induces a monad hT on hoC such that the forgetful functor ho(CT )→ hoC factors
through (hoC )hT .
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Proof. Quillen adjoints induce adjoints between the homotopy categories and consequently a monad
action on hoC given by the composite. The right adjoint between the homotopy categories always
lands in the category of algebras over this monad.

Definition 3.8. Let T be an S-graded theory and X a T -model in sSet . Let

ι : sSet S
(T↓X )ab

→ sSet S
T↓X

be the Quillen right adjoint from Proposition 3.5.
If M is in Set S

(T↓X )ab
and Y ∈ sSet S

T↓X , then the sth Quillen cohomology of Y with coefficients in M
is defined to be the group

Hs
Q,X (Y ; M) := hosSet S

T↓X (Y , ιΣsM)

where ΣsM is the sth suspension of M (see [40]).

3.2. Simplicial resolutions of T-algebras
If T is a monad acting on C , then applying T levelwise to simplicial objects in C yields a monad

acting on the category sC of simplicial objects which we will also denote by T. Now to construct a
spectral sequence computing the homotopy groups of the space CT (X ,Y ) we would like to resolve
X , meaning that we want to replace X by a nice simplicial T-algebra X• such that CT (|X•|,Y ) '
C d

T (X ,Y ). If T is a monad acting on C , then applying T levelwise to simplicial objects in C yields a
monad, also denoted by T, acting on the category of simplicial objects in C .

Definition 3.9. Suppose X is a T-algebra in C . The bar resolution (also called the cotriple resolution)
of X is the simplicial T-algebra

B•X = B•(FT ,T,U X )= B•(FTU ,FTU , X )

with Bn X = (FTU)n+1X and face and degeneracy maps induced from the monad structure on T =
UFT and the T-algebra structure on X .

Note that the counit FTU X → X extends to a map of simplicial T-algebras

(3.10) ε : B•X → X

where we regard the target as a constant simplicial object. By applying U to (3.10) we obtain a map
ε : T•+1U X →U X in sC . We also have a simplicial map e : U X → T•+1U X by iterating the unit map
U X → TU X .

For a simplicial T-algebra X , there are two relevant geometric realizations. One is realization in
the category of T-algebras, and another is realization in the underlying category. We would like to
have conditions under which these two notions coincide, i.e., under which U commutes with geometric
realizations.

One such condition appears in [18, Prop. X.1.3.v]: If T is given by a coend formula, then U
preserves geometric realizations. More precisely, if T is given by a formula such as the one in (2.9),
we will show that T commutes with geometric realization and then apply Proposition 3.12 to see that
U commutes with geometric realizations.
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Proposition 3.11. Let C be a simplicial category and F : C ×D → C a functor such that for each
d ∈D, F(−,d) commutes with geometric realizations in C . If T is an endofunctor of C of the form

TX =
∫ d∈D

G(d)⊗F(X ,d)

for some G : Dop → sSet , then T commutes with geometric realizations.

Proof. Since geometric realization is a coend, the result immediately follows from Fubini’s theorem
for iterated coends.

Proposition 3.12. Let C be a bicomplete simplicial category and T a simplicial monad acting on C .
Suppose that CT is a bicomplete simplicial category and that T commutes with geometric realization.
If X• is a simplicial object in CT , then |U X•|C is a T-algebra and U |X•|CT

∼= |U X•|C in CT . So U
commutes with geometric realization if and only if T does.

Proof. Since FT is a left adjoint it commutes with geometric realization. So if U commutes with
geometric realization then so does T =UFT .

Now suppose that T commutes with geometric realization. If we take the geometric realization
in the category of T-algebras of a canonical presentation

FT TU X•
//

// FTU X• //

e

{{

X•,

and then apply U we obtain the following commutative diagram with marked isomorphisms:

U |FT TU X•|CT

∼=
��

//

// U |FTU X•|CT

∼=
��

//

e

yy

U |X•|CT

T|TU X•|C
∼=
��

//

// T|U X•|C
∼=
��

//

e

yy

U |X•|CT

∼=
��

|TTU X•|C
//

// |TU X•|C //

e

yy

|U X•|C .

The vertical isomorphisms between the first two rows follow from FT being a left adjoint. The next
two vertical isomorphisms on the left follow from our assumption on T and imply the desired lower
right hand isomorphism.

One can interpret the following result as saying that the bar resolution is indeed a resolution.

Proposition 3.13. Suppose C is a simplicial model category and T is a simplicial Quillen monad
acting on C . If T (or equivalently U) commutes with geometric realization, then

ε : |B•X |CT → X

is a weak equivalence of T-algebras.
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Proof. Because T is Quillen, it suffices to show that Uε is a weak equivalence in C . This follows from
Proposition 3.12 and the following well known lemma.

Lemma 3.14. [36, Prop. 9.8] Let X ∈CT . The maps e and ε on realization

U X e−→ |T•+1U X |C ε−→U X

exhibit U X as a strong deformation retract of |T•+1U X |C in C .

3.3. Reedy cofibrant resolutions of T-algebras
To construct a spectral sequence using the bar resolution of X we require that this resolution

is homotopically well behaved, that is we will require it to be a Reedy cofibrant simplicial diagram
as described below. If we were to simply take a Reedy cofibrant replacement of the bar resolution
we would no longer be able to apply Proposition 3.13 to deduce that the geometric realization of our
resolution has the correct homotopy type. To show that a bar resolution is Reedy cofibrant we will
apply a useful trick (Proposition 3.17) which makes use of a closely related almost simplicial diagram.

Let ∆0 be the subcategory of ∆ with the same objects but whose morphisms are those morphisms
of linearly ordered sets which preserve the minimal element. The restriction morphism

ι∗ : C ∆op →C ∆
op
0

takes a simplicial object and forgets the d0 face maps (those induced by injections missing the mini-
mal element) while retaining all of the other structure. So one can think of a ∆op

0 -shaped diagram as
almost a simplicial diagram; it simply lacks the d0 face maps.

Definition 3.15. Let X• be in C ∆op
(resp. C ∆

op
0 ). The nth latching object of X• is

Ln(X•)= colim
[n]→[k]

Xk,

where the colimit is indexed over the non-identity surjections in ∆ (this is equal to the set of non-
identity surjections in ∆0).

The category ∆ is the prototypical example of a Reedy category [23, § 15.1]. It is immediate from
the definition of a Reedy category that the Reedy structure on ∆ restricts to Reedy structure on ∆op.
This structure is used to make the following:

Definition 3.16. Suppose that C is a model category. The Reedy model structure on C ∆op
(resp. C ∆

op
0 )

is determined by

a. f : X• → Y• is a (Reedy) weak equivalence if fn : Xn → Yn is a weak equivalence in C for all
n ≥ 0.

b. f : X• →Y• is a (Reedy) cofibration if the induced map

Xn
∐

Ln X•
LnY• →Yn

is a cofibration in C for all n ≥ 0.

To show the bar resolution is Reedy cofibrant in particular cases we will use the following trick:
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Proposition 3.17. Suppose C and D are model categories and L : D → C is a left Quillen functor.
Let X• be a simplicial diagram in C and ι∗X• ∈C ∆

op
0 its restriction. Suppose that there exists a Reedy

cofibrant X̃• ∈D∆
op
0 such that LX̃• ∼= ι∗X•. Then X• is Reedy cofibrant.

Proof. By definition X• is Reedy cofibrant if for each non-negative n the latching map

Ln X• → Xn

is a cofibration. Note that the latching object and map depend only on the restriction of X• to the
subcategory ∆

op
surj, where ∆surj consists of all objects [n] but only surjective maps. In particular it

suffices to show ι∗X• is Reedy cofibrant. Since L is a Quillen left adjoint it commutes with colimits
and preserves cofibrations so it takes the Reedy cofibrant X̃• to the Reedy cofibrant diagram LX̃•.
Since being cofibrant is invariant under isomorphism the result follows.

For a T-algebra X ∈CT , we have a ∆op
0 -shaped diagram

T•U X : ∆op
0 →C

where
(T•U X )n = TnU X

and the maps (T•U X )(si) and (T•U X )(di) are defined as in the bar construction.

Definition 3.18. Suppose that T is a Quillen monad acting on C and X is a T-algebra. A bar
cofibrant replacement of X is a cofibrant replacement X̃ → X in T-algebras such that T•U X̃ is Reedy
cofibrant in C ∆

op
0 . We will say X is resolvable if it admits a bar cofibrant replacement.

Proposition 3.19. Let T be a Quillen monad acting on C and X̃ → X a bar cofibrant replacement of
a T-algebra X . Then the bar resolution B• X̃ is a Reedy cofibrant simplicial T-algebra and any two
choices of bar cofibrant replacement yield weakly equivalent bar resolutions.

Proof. By assumption T•U X̃ is Reedy cofibrant in C ∆
op
0 . By applying the left Quillen functor FT : C →

CT levelwise to this diagram and using Proposition 3.17 we see that B• X̃ is Reedy cofibrant.
Two different bar cofibrant resolutions X̃1 and X̃2 of X are, in particular, cofibrant replacements

for X in T-algebras. It follows that there is a weak equivalence of T-algebras f : X̃1 → X̃2 which
induces a map of bar resolutions. To see that the map is a levelwise weak equivalence we argue
by induction. The weak equivalence in degree 0 is induced by applying FT to the weak equivalence

U X̃1
U f−−→U X̃2. Since X̃1 and X̃2 are bar cofibrant this is a weak equivalence between two cofibrant

objects of C . It follows that the induced map in degree 0 is a weak equivalence between two cofibrant
T-algebras. The induction argument is similar.

The remainder of this section is devoted to proving various technical results which will assist in
determining when a T-algebra is resolvable.

3.3.1. Monads on diagrams of simplicial sets.
Lemma 3.20. Let S be a set and C = sSet S equipped with the product model structure. Then any
diagram X• : ∆op

0 →C is Reedy cofibrant.

Proof. We observe that ∆0 is Eilenberg-Zilber [11, Def. 4.1], i.e., ∆0 satisfies:

20



(EZ1) For all surjections σ : [n+m]→ [n] in ∆0, the set of sections

Γ(σ)= {τ ∈∆0
∣∣στ= id[n]}

is nonempty.
(EZ2) For any two distinct surjections σ1,σ2 : [n+m] → [n], the sets of sections Γ(σ1) and Γ(σ2) are

distinct.

The two conditions are verified as follows: For any surjection σ in ∆0 consider the section σ′( j) =
min(σ−1( j)). It is immediate that σ′ is also in ∆0 and that σ′

1 6=σ′
2 if σ1 6=σ2.

By [11, Prop. 4.2], every Eilenberg-Zilber Reedy category is elegant ([11, Def. 3.5]) and by [11,
Prop. 3.15] the product and Reedy model structures agree on categories of elegant diagrams in C =
sSet S . In particular, the object X• will be Reedy cofibrant because the cofibrations in the product
model structure are the levelwise cofibrations and every simplicial set is cofibrant.

Proposition 3.21. If T is a simplicial Quillen monad acting on sSet S , then any T-algebra admits a
bar cofibrant replacement.

Proof. By Lemma 3.20 any cofibrant replacement in sSet S
T is bar cofibrant.

3.3.2. Cellular monads.
Proposition 3.22. Let C be a cofibrantly generated model category in which relative cell complexes
are monomorphisms and let X• ∈ C ∆

op
0 be a degreewise cellular diagram such that each degeneracy

si is a subcellular inclusion. Then the latching maps of X• are cellular inclusions and therefore X• is
Reedy cofibrant.

Proof. The proof of [18, Thm. X.2.7] can be modified to show inductively that [18, (X.2.5)] is a pushout-
pullback diagram of subcell complexes defined as unions of the subcell complexes given by the de-
generacies. Such unions are well-defined because relative cell complexes are monomorphisms [23,
Prop. 10.6.10].

Proposition 3.23. Let T be a Quillen monad acting on a cofibrantly generated model category C .
Suppose that relative cell complexes in C are monomorphisms and that for any cellular object M,
TM is cellular and the natural unit map M → TM is a cellular inclusion. If X̃ → X is a cofibrant
replacement of a T-algebra X , such that U X̃ is cellular, then X̃ is a bar cofibrant replacement of X .

Proof. This is an immediate application of Proposition 3.22.

3.3.3. Monads whose unit maps are inclusions of summands.
Proposition 3.24. Let C be a pointed model category and let X• ∈C ∆

op
0 be a diagram such that X0 is

cofibrant and each degeneracy si is a cofibration and the inclusion of a summand. Then the latching
maps of X• are cofibrations and summand inclusions, and therefore X• is Reedy cofibrant.

Proof. First let X∞ = colimi X i where X i maps to X i+1 via s0. Let A∞ be a set such that

X∞ = ∨
α∈A∞

Yα
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where Yα cannot be written as a nontrivial coproduct. Since each Xn is an inclusion of a summand
of Xn+1, there are subsets An ⊂ A∞ such that

Xn = ∨
α∈An

Yα.

The degeneracies Xn−i → Xn are summand inclusions and therefore are induced by subset inclusions
An−i → An which we call the set-level degeneracies. We can now identify the degenerate simplices
Xdg

n =∨
α∈A′

n
Yα where A′

n is the union (i.e., colimit) of all the An−i under these set-level degeneracies
for 1 ≤ i ≤ n. This union of sets indexes the colimit of objects yielding the latching object, so we can
identify Xdg

n with Ln X• and the latching map with that induced by the inclusion A′
n → An.

Let Xnd
n be the complementary summand of Ln X•—this is the nondegenerate part of Xn. To see

that the latching map is a cofibration we begin by observing that it is a coproduct of the identity map
on the latching object with the map from the initial object into Xnd

n . Now Xn is cofibrant because
each of the degeneracies are cofibrations and X0 is cofibrant. The retract Xnd

n is therefore cofibrant,
and hence the latching map is a coproduct of cofibrations.

Proposition 3.25. Let T be a simplicial Quillen monad acting on a pointed simplicial model category
C . Suppose that for any cofibrant object M the natural unit map M → TM is a cofibration and
inclusion of a summand. If X̃ → X is a cofibrant replacement of a T-algebra X , such that U X̃ is
cofibrant, then X̃ is a bar cofibrant replacement of X .

Proof. This is an immediate application of Proposition 3.24.

4. The spectral sequence and examples

4.1. Proof of Theorem A
Now we recall and prove the central theorem of this paper:

Theorem A. Let C be a simplicial model category and T a simplicial Quillen monad acting on C .
Let X and Y be T-algebras. Suppose that

a. T commutes with geometric realization and
b. X is resolvable with bar cofibrant replacement X̃ → X .

Let U : CT →C denote the forgetful functor from the category of T-algebras to C . Then T induces a
monad hT on hoC and there exists an obstruction-theoretic spectral sequence satisfying:

1. E0,0
1 = hoC (U X ,UY ).

2. E0,0
2 = (hoC )hT (U X ,UY ). That is, a homotopy class [ f ] : U X →UY survives to the E2 page if

and only if it is a map of hT-algebras in the homotopy category.

3. Provided a T-algebra map ε : X →Y to serve as a base point, the spectral sequence conditionally
converges to the homotopy of the derived mapping space

πsπt(C d(T•U X̃ ,UY ),ε)=⇒πt−s(C d
T (X ,Y ),ε).

4. In this case the differentials dr[ f ] provide obstructions to lifting [ f ] to a map of T-algebras.
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5. The edge homomorphisms

π0C d
T (X ,Y )� E0,0

∞
,→ E0,0

2 = (hoC )hT (U X ,UY )

,→ E0,0
1 = hoC (U X ,UY )

are the corresponding forgetful functors.

6. If CT has functorial bar cofibrant and fibrant replacements, then the spectral sequence is con-
travariantly functorial in X and covariantly functorial in Y .

7. A map of simplicial monads T1 → T2 satisfying the above hypotheses induces a contravariant
map of spectral sequences provided that X has a bar cofibrant replacement X̃ → X in CT2 such
that U3 X̃ has a bar cofibrant replacement in CT1 .

Proof. First, in order for the theorem to make sense there must be a derived mapping space of T-
algebras and this follows from the assumption that T is simplicial Quillen.

The conclusions of the theorem depend only on the weak equivalence classes of X and Y , so with-
out loss of generality we assume Y is a fibrant T-algebra and, replacing X with X̃ if necessary, that
X is a bar cofibrant T-algebra. By Proposition 3.19 the bar resolution B•X is a Reedy cofibrant sim-
plicial T-algebra and any two choices of bar cofibrant replacement yield equivalent bar resolutions.
Since Y is fibrant and C is a simplicial model category, applying the mapping space functor CT (−,Y )
to a Reedy cofibrant simplicial T-algebra yields a Reedy fibrant cosimplicial space. In particular,
CT (B•X ,Y ) is Reedy fibrant.

Applying [16], the totalization tower for this Reedy fibrant cosimplicial space arising from the
skeletal filtration on |B•X | yields an obstruction-theoretic spectral sequence computing the homotopy
of the totalization

Tot(CT (B•X ,Y ))∼=CT (|B•X |,Y ).

This spectral sequence conditionally converges provided there exists a base point at which to take
homotopy groups. (A list of obstructions to determining such a base point is also provided by the
construction; see Remark 4.4.)

Now since B•X is Reedy cofibrant and CT is a simplicial model category, |B•X | is a cofibrant T-
algebra. Since T commutes with geometric realization, Proposition 3.13 shows that the augmentation
map

|B•X |→ X

is a weak equivalence of T-algebras. It follows that CT (|B•X |,Y ) is a model for C d
T (X ,Y ) and this

gives the target of the spectral sequence in (3). Conclusion (4) follows immediately from the condi-
tional convergence of the spectral sequence.

The E0,0
1 term of the Bousfield-Kan spectral sequence is the set

π0CT (B0X ,Y )=π0CT (FTU X ,Y )∼=π0C (U X ,UY ).

To prove (1) we will show the right-hand side can be identified with morphisms in the homotopy
category. This follows if U X is cofibrant and UY is fibrant since C is a simplicial model category.
These conditions follow from the hypotheses that X is bar cofibrant and that T is Quillen: T•U X is
Reedy cofibrant so the zeroth latching map shows that U X is cofibrant. Since T is Quillen, U is a
right Quillen functor and therefore UY is fibrant because Y is fibrant.
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The edge homomorphism
π0C d

T (X ,Y )→ E0,0
1

is induced by restricting along the inclusion

sk0|B•X | = FTU X →|B•X |

which by adjunction gives the second half of (5). The first half will follow from the identification of
the E0,0

2 term in (2).
To prove (2) recall that the E0,0

2 term of the Bousfield-Kan spectral sequence is defined to be the
equalizer of the two face maps

π0CT (B0X ,Y )âπ0CT (B1X ,Y ).

We again use the adjunction and the fact that T•U X is Reedy cofibrant to see that the diagram above
is isomorphic to

hoC (U X ,UY )â hoC (TU X ,UY ),

whose equalizer is, by definition, (hoC )hT (U X ,UY ) (see (2.2) and Proposition 3.7). In other words, a
map lifts to E0,0

2 precisely if it is a homotopy T-algebra map.
Provided a base point ε for the spectral sequence, or even a point that lifts to Tot2 (see Re-

mark 4.4), the E1 page of this spectral sequence is given by applying πt to the spaces CT (Bs X ,Y )
and normalizing as in [16, § 2.4]. The E2 term can be identified with the cohomotopy of this graded
cosimplicial object which is typically denoted as follows:

Es,t
2 =πsπt(CT (B•X ,Y ),ε).

By adjunction we have

CT (Bn X ,Y )=CT (FT TnU X ,Y )∼=C (TnU X ,UY ).

As in the previous steps, the right-hand side is a model for the derived mapping space since UY is
fibrant and T•U X is Reedy cofibrant. This completes the proof of (3).

Since the Bousfield-Kan spectral sequence is functorial in maps of fibrant cosimplicial spaces, to
prove (6) it suffices to see that our construction of the fibrant cosimplicial space is functorial in X and
Y . This is immediate from the functoriality of the bar resolution and the conditions of (6).

To prove (7) we note that a map of simplicial monads T1 → T2 between cocomplete categories de-
termines a monadic adjunction (FT3 ,U3) fitting into the following diagram [15, Cor. 4.57, Prop. 4.5.9]:

CT1

U1

$$

FT3
//
CT2

U2
zz

U3

oo

C

FT2

::

FT1

dd

To see that U3 induces a morphism of simplicial mapping objects, observe that a map of simplicial
monads induces a natural transformation between the equalizer diagrams in simplicial sets which
determine the simplicial mapping objects in T2 and T1-algebras respectively (cf. (2.2)). Since both
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categories of algebras inherit their composition laws from the composition in C we see that U3 is a
simplicial functor.

To obtain a map between the spectral sequences corresponding to

CT2 (X ,Y )
U3−−→CT1 (U3X ,U3Y )

let r : (U3X )b →U3X be a bar cofibrant replacement of U3X in CT1 . We remind the reader that we
have already replaced X and Y by their bar cofibrant and fibrant replacements respectively. Now
apply U3 to the T2-bar resolution for X , precompose with the unit map e : IdCT1

→ T3, and take bar
cofibrant and fibrant replacements of U3X and U3Y respectively2:

CT2 (B•(FT2 ,T2,U2X ),Y )
U3−−→CT1 (U3B•(FT2 ,T2,U2X ),U3Y )

=CT1 (B•(T3FT1 ,U1T3FT1 ,U1U3X ),U3Y )
e∗−→CT1 (B•(FT1 ,T1,U1U3X ),U3Y )
r∗−→CT1 (B•(FT1 ,T1,U1(U3X )b), (U3Y ) f ).

So by our assumptions on X , we see that U3 induces a morphism between two fibrant cosimpli-
cial spaces whose associated spectral sequences are the T-algebra spectral sequences calculating
π∗C d

T2
(X ,Y ) and π∗C d

T1
(U3X ,U3Y ) respectively.

We highlight two immediate corollaries of Theorem A.

Corollary 4.1. The forgetful functor taking a non-empty ho(CT )(X ,Y ) to (hoC )hT (X ,Y ) is surjective
if and only if the differential dr on E0,0

r is trivial for all r ≥ 2.

Corollary 4.2. Suppose the portion of the spectral sequence computing π0C d
T (X ,Y ) converges [16,

§ 4.2], i.e., there exists a base point ε and

lim
s

1π1(C d
T (sks|B• X̃ |,Y ),ε)= 0.

Then the forgetful functor taking ho(CT )(X ,Y ) to (hoC )hT (X ,Y ) is injective if and only if Et,t
∞ = 0 for

t > 0.

Remark 4.3. As stated in [16], every entry in the spectral sequence above should consist of pointed
sets. We have chosen to omit the distinguished point [ε] in bidegree (0,0) to simplify the statement of
Theorem A.

Remark 4.4. There are, in fact, a variety of obstruction sequences whose vanishing can give a
lift of ε through the totalization tower. The following are special cases of [16, §§ 2.4, 2.5, 5.2] for a
cosimplicial object X• in a simplicial category D:

1. The rth spectral sequence page Ep,q
r is defined if there is an element εr−1 ∈ Tot r−1 D(X•,Y )

which lifts to Tot2r−2 D(X•,Y ), and the page depends naturally on εr−1.

2In practice, all of the model structures on T-algebras are usually right induced and U3 is necessarily a simplicial right
Quillen functor. In this case taking a fibrant replacement is not necessary.
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2. Let εp ∈Tot p D(X•,Y ), and let εk be the projection of εp to Tot k D(X•,Y ). If

p/2≤ k ≤ p

then there is an obstruction element lying in Ep+1,p
p−k+1 which vanishes if and only if εk lifts to

Tot p+1 D(X•,Y ).

If Whitehead products vanish in each D(Xs,Y ) (e.g., when the mapping spaces of D are H-spaces),
then the range in which the obstruction classes are defined can be extended as follows:

1′. The rth spectral sequence page Ep,q
r is defined if there is an element εr−2 ∈ Tot r−2 D(X•,Y )

which lifts to Tot2r−3 D(X•,Y ), and the page depends naturally on εr−2.
2′. Let εp ∈Tot p D(X•,Y ), and let εk be the projection of εp to Tot k D(X•,Y ). If

(p−1)/2≤ k ≤ p

then there is an obstruction element lying in Ep+1,p
p−k+1 which vanishes if and only if εk lifts to

Tot p+1 D(X•,Y ).

Taking p = 1 and k = 0 in (2′) from Remark 4.4, we obtain the following useful refinement of
Theorem A.

Theorem 4.5. (Cf. [20, Cor. 2.4.15]) Let C be a simplicial model category and T a simplicial Quillen
monad acting on C such that T commutes with geometric realization. Let X and Y be T-algebras,
such that X admits a bar cofibrant replacement X̃ . Moreover, assume that the derived mapping
spaces C d(TnU X̃ ,UY ) have the homotopy type of H-spaces.

Then the T-algebra spectral sequence exists, its E2 term is always defined, and there is a series
of successively defined obstructions to realizing a map

[ f ] ∈ E0,0
2 = (hoC )hT (U X ,UY )

in the groups
Es+1,s

2
∼=πs+1πs(C d(T•U X̃ ,UY ), f )

for s ≥ 1. In particular, if these groups are always zero, then the map induced by the forgetful functor

ho(CT )(X ,Y )→ (hoC )hT (U X ,UY )

is surjective. If the portion of the spectral sequence computing π0C d
T (X ,Y ) converges and

πsπs(C d(T•U X̃ ,UY ), f )= 0

for each choice of [ f ] and all s ≥ 1, then this map is an injection.

4.2. Observations on E1

To simplify notation for this section we assume that C , T, X , and Y are as in Theorem A and we
have replaced X with X̃ and Y with its fibrant replacement if necessary.

Provided all of the terms in Es,t
1 of the T-algebra spectral sequence for t > 0 are abelian groups,

then we can avoid using the normalized cocomplex in [16] and instead use Moore cochains. For
example, this happens if the mapping spaces C (TnU X ,UY ) have the homotopy type of H-spaces
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hoC↓UY

(
T2U X ,UY S1

)
hoC↓UY

(
T2U X ,UY S2

)
hoC↓UY

(
T2U X ,UY S3

)

hoC
(
TU X ,UY

)
hoC↓UY

(
TU X ,UY S1

)
hoC↓UY

(
TU X ,UY S2

)

hoC
(
U X ,UY

)
hoC↓UY

(
U X ,UY S1

)
t− s

-1 0 1

s

0

1

2

Figure 4.6: Low-degree terms on the E1 page of the T-algebra spectral sequence, interpreted as homotopy classes of lifts.

(Theorem 4.5). For the unnormalized complex, we can apply the tensor-cotensor adjunction to obtain
the following identification of Es,t

1 :

Es,t
1 =πt

(
C (TsU X ,UY ),ε

)∼=π0C↓UY (TsU X ,UY St
).

This displays Es,t
1 as a set of homotopy classes of lifts in the diagram below, with homotopies over ε:

UY St

��

TsU X ε
//

::

UY

As in the proof of Theorem A, T•U X is Reedy cofibrant and it follows that each TnU X is cofi-
brant in C . Since U creates cotensors, preserves fibrations, and Y is fibrant in CT , we see UY St

is fibrant in C . Now the overcategory is a cofibrantly generated simplicial model category whose
cofibrations/fibrations/weak equivalences are those of C . So these objects are cofibrant and fibrant
respectively in C↓UY . Regarding U X as an object over UY by a chosen map ε : U X →UY , we identify
the unnormalized complex:

Es,t
1

∼= hoC↓UY (TsU X ,UY St
) for t > 0.

4.3. Theorem B: Quillen cohomology and the E2-term
The purpose of this section is to prove Theorem B, which gives criteria for obtaining an algebraic

description of the E2 term from Theorem 4.5.

Theorem B. Let T be a simplicial Quillen monad acting on a simplicial model category C such that
T commutes with geometric realization. Let X ,Y ∈ CT . Suppose that bar cofibrant replacements
exist in CT so that, without loss of generality, we can assume X and Y are bar cofibrant and fibrant
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respectively. Moreover, assume that the derived mapping spaces C d(TnU X ,UY ) have the homotopy
type of H-spaces and there is a functor

π∗ : hoC →D

such that

a. The associated map

π∗ : hoC (TsU X ,UY St
)→D(π∗TsU X ,π∗UY St

)

is an isomorphism for all s, t ≥ 0.
b. There is a natural isomorphism π∗TX ∼= Talgπ∗X for a monad Talg compatible with the struc-

ture homomorphisms of T and Talg.
c. The categories D and DTalg are categories of Set -valued models for some graded algebraic the-

ories (i.e., they are algebraic categories in the sense of Quillen).
d. For t ≥ 1, π∗Y St

is naturally an abelian group object in the category of Talg-algebras over π∗Y .

Then the E2 term of the T-algebra spectral sequence exists and can be identified as follows:

E0,0
2

∼=DTalg (π∗U X ,π∗UY )

Es,t
2

∼= Hs
Q,π∗UY (π∗U X ;π∗UY St

) for t > 0.

Here the cohomology groups on the second line are the associated Quillen cohomology groups of our
Talg-algebra π∗X viewed as an algebra over π∗Y via a choice of an element in E0,0

2 as in Definition 3.8.

Proof. First we identify E0,0
2 : As remarked in the proof of Theorem A, this is computed by the equal-

izer
E0,0

2 = eq
(
hoC (U X ,UY )â hoC (TU X ,UY )

)
where the morphisms are induced by the T-algebra structures on X and Y respectively. Using the
isomorphisms from condition (a) we obtain the identification

E0,0
2

∼= eq
(
D(π∗U X ,π∗UY )âD(π∗TU X ,π∗UY )

)
.

Applying π∗ and condition (b) we obtain

E0,0
2

∼=DTalg (π∗U X ,π∗UY )∼= eq
(
D(π∗U X ,π∗UY )âD(Talgπ∗U X ,π∗UY )

)
.

Now to identify the remainder of the E2 term we pick a map f : U X → UY representing some
element [ f ] ∈ E0,0

2 . By Theorem A for t > 0

Es,t
2

∼=πsπt
(
C (T•U X ,UY ), f

)
.

Since the hypotheses of Theorem 4.5 are satisfied

πt
(
C (T•U X ,UY ), f

)
is a cosimplicial abelian group for t > 0 and the cohomotopy group πs can be calculated as the sth
cohomology group of the associated Moore cochain complex. By the discussion in Section 4.2 we see

πt
(
C (TsU X ,UY ), f

)∼= hoC↓UY (TsU X ,UY St
).
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Applying the homotopy invariant functor π∗ and conditions (a) and (b) we obtain

Es,t
2

∼= Hs
(
D↓π∗Y (T•

algπ∗U X ,π∗UY St
)
)

∼= Hs
(
DTalg ↓π∗Y (FTalg T•

algπ∗U X ,π∗UY St
)
)

where the last isomorphism uses the fact that π∗UY St
is a Talg-algebra over π∗Y . These cohomol-

ogy groups are, by definition, the cotriple cohomology groups of π∗U X with respect to the cotriple
associated to the monad Talg.

To complete the proof we identify the cotriple cohomology with Quillen cohomology using (c), (d),
and [40, § II.5 Thm. 5].

4.4. Applicable contexts
This section will be devoted to demonstrating that the hypotheses of Theorem A are satisfied in

many categories of interest.

4.4.1. Simplicial algebraic theories
Theorem 4.7. If T is a monad on sSet S associated to an S-graded algebraic theory as in Section 2.2,
then the T-algebra spectral sequence can be applied functorially to any X ,Y ∈ sSet S

T .

Proof. By Proposition 3.4 we see that T is simplicial Quillen and sSet S
T is a cofibrantly generated

model category. Applying Proposition 3.11 with the decomposition from (2.9) shows that T commutes
with geometric realizations. Finally since sSet S

T is cofibrantly generated, it admits functorial cofi-
brant and fibrant replacements. It follows from Proposition 3.21 that sSet S

T admits functorial bar
cofibrant replacements.

For example, by Remark 2.19 we can apply the T-algebra spectral sequence to analyze spaces
of operad maps. Since the space of operad maps from an operad O to the endomorphism operad of
an object X (when defined) is in correspondence with the space of algebra structures on X [43], one
could, in principle, use this spectral sequence to analyze algebra structures on X .

4.4.2. G-actions

For the following result one can use any of the standard cofibrantly generated models for the category
of spectra which is enriched in spaces, whose relative cell complexes are monomorphisms, and such
that the tensor product of a subcellular inclusion of spaces with a cellular spectrum is naturally a
subcellular inclusion of spectra.

Proposition 4.8. Let G be a topological group admitting a cellular structure such that the inclusion
of the unit e →G is the inclusion of a sub-complex. Let TX =G+∧ X =ResG

e IndG
e X be the monad on

pointed spaces/spectra whose algebras are pointed G-spaces/G-spectra. Then the T-algebra spectral
sequence can be applied functorially to any X ,Y in these categories.

Proof. It is well known and straightforward to show using Theorem 3.2 and Remark 3.3 that T
is simplicial Quillen. Since geometric realization commutes with smash products in either of these
categories we see that T commutes with geometric realization. Since the unit transformation applied
to cellular spectra gives an inclusion of subcomplexes, by Proposition 3.23 we see that the equivariant
cellular replacement of X is bar cofibrant.
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In the case of pointed G-spaces or G-spectra the T-algebra spectral sequence takes a familiar
form. The bar resolution of a CW-complex X is the standard cofibrant replacement B(G+,G+, X )→ X
in the ‘Borel’ or projective model structure on G-objects. We emphasize that, although this is a
common model structure to work with, it is not the standard model structure used in equivariant
homotopy theory (cf. [37]). In particular, the cofibrant replacement of S0 in this model structure is
EG+, which is often infinite dimensional.

Note that G acts levelwise on the left of the simplicial bar construction and that the left copy of
G+ in each degree of the bar construction is actually notation for the left adjoint IndG

e . The stan-
dard equivariant equivalence IndG

e (Y )∧ X ∼= IndG
e (Y ∧ResG

e X ) [37, (I.1.6)] induces a G-equivariant
isomorphism between EG•+∧ X with its diagonal G-action and B•(G+,G+, X ) with G acting on the
left. So the T-algebra spectral sequence computing the homotopy groups of the derived space of G-
maps, in the projective model structure, between X and Y becomes a homotopy fixed point spectral
sequence. More specifically the spectral sequence computes the homotopy groups of F(X c,Y f )hG ∼=
F(EG+∧X c,Y f )G where F(X c,Y f ) is the corresponding G-space of maps and X c and Y f are functo-
rial cofibrant and fibrant replacements of X and Y respectively.

Remark 4.9. As one might expect, the homotopy G-spaces/spectra (i.e., the homotopy T-algebras for
T as above) will correspond to those spaces/spectra which admit a G-action in the homotopy category.
Morphisms of homotopy G-spaces/spectra are maps in the homotopy category which commute with
the G-action. In particular, any G-map which is non-equivariantly null-homotopic is necessarily
trivial in the category of homotopy G-spaces (see Section 5.1).

4.4.3. Algebras over operads
As in Section 2.4, we will continue to assume that all of our operads are defined in simplicial sets.

We will say an operad is cofibrant if it is cofibrant in the model structure associated to the graded
simplicial algebraic theory discussed in Remark 2.19. This is the same model structure considered
in [9, § 3.3.1].

Suppose that C is a simplicial symmetric monoidal model category satisfying the hypotheses of
Proposition 2.20. As shown in Section 2.4, this assumption implies that the category of O-algebras
in C is equivalent to a simplicial category of TO -algebras. We will say that O is admissible if TO is a
simplicial Quillen monad such that CTO has a right induced model structure.

Proposition 4.10. Let C be a symmetric monoidal simplicial model category satisfying the hypothe-
ses of Proposition 2.20. Let T be the monad associated to a cofibrant admissible operad and suppose
that

a. geometric realization commutes with the symmetric monoidal structure on C and
b. one of the following conditions holds:

(i) The underlying category C is sSet S for some set S.
(ii) C is cofibrantly generated, relative cell complexes in C are monomorphisms, for each

cellular X ∈ C the unit map X → TX is a cellular inclusion, and the object underlying
each cellular T-algebra is a cellular object of C .

(iii) C is pointed, for each cofibrant X ∈ C the unit map X → TX is a cofibration and the in-
clusion of a summand, and the the object underlying each cofibrant T-algebra is cofibrant
in C .

Then the T-algebra spectral sequence can be applied to any X ,Y ∈CT . Moreover if CT is cofibrantly
generated, then the spectral sequence is functorial in X and Y .
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Proof. Proposition 2.20 shows that CT is a bicomplete simplicial category. By definition of admissi-
bility, T is simplicial Quillen. Since geometric realization commutes with the monoidal structure, we
can apply Proposition 3.11 to (2.18) and see that T commutes with geometric realization.

Since our operad is admissible cofibrant we can replace any T-algebra by one which is cofibrant
in C by the argument in [44, Rem. 13.3] (cf. [9, Thm. 3.5(b)]). Finally by the remaining hypothe-
sis we can apply either Proposition 3.21, Proposition 3.23, or Proposition 3.25 to see that the cofi-
brant/cellular replacement of any T-algebra is bar cofibrant.

Proposition 4.11. Let C be a pointed symmetric monoidal simplicial model category satisfying the
hypotheses of Proposition 2.20. Let T be a monad acting on C and suppose that

a. geometric realization commutes with the symmetric monoidal structure on C and
b. T arises from an admissible operad WO , where WO is the Boardman-Vogt cofibrant replace-

ment of an operad O (see [10]) such that O(0)=O(1)=∗.

Then the T-algebra spectral sequence can be applied to any X ,Y ∈CT .

Proof. We will apply Proposition 4.10 using the hypotheses that C is pointed and that the unit map
is a cofibration and the inclusion of a summand. As shown in [10] the Boardman-Vogt construction
yields a functorial cofibrant replacement of our operad. We will show in Lemma 4.12 that (WO)(1)=
∗, so the unit map X → TX is always the inclusion of a summand.

Since WO is cofibrant, by replacing X with a cofibrant replacement if necessary, we can assume
X is cofibrant in C by the argument in Proposition 4.10. Since C is a symmetric monoidal model
category it is straightforward to apply the pushout-product axiom and induction on n to see that X⊗n

is cofibrant. Finally, since our cofibrant operad is Σ-cofibrant [10, § 2.4] we see that WO(n)⊗X⊗n is a
retract of a cellular complex built with free Σn-cells. It follows that WO(n)⊗Σn X⊗n is cofibrant which
in turn implies TX is cofibrant.

Lemma 4.12. Suppose that O is an operad in sSet such that O(0)=O(1)=∗. Then WO(1)=∗.

Proof. The result follows immediately from the construction of WO in [10] and we use the notation
therein. Namely, under the given hypotheses all of the maps in the sequential colimit

W(H,O)(n)= colim
(
O(n)=W0(H,O)(n)→W1(H,O)(n)→···)

are isomorphisms when n = 1 (H is the unit interval here). To see this, one observes that the right-
hand (and therefore left-hand) vertical maps in the pushout [10, (13)] are isomorphisms for n = 1: For
trees G with a single input edge, the objects O(G) and O−(G) are equal (all vertices of G are univalent,
and if O(1)=∗ then O c(G)=O(G) for any subset of univalent vertices c). As an aside, note that this
implies the vertical arrows in the pushout diagram at the end of [10, § 3] are isomorphisms for n = 1,
and hence F∗(O)(1) = O(1) = ∗. Moreover, this implies (H ⊗O)−(G) = H(G)⊗O−(G). Therefore the
vertical maps in [10, (13)] are isomorphisms and W(H,O)(1)=W0(H,O)(1)=O(1).

Let R be a commutative ring spectrum. For the following corollary one can use any symmetric
monoidal category of R-modules satisfying the conditions of Proposition 2.20 and condition (a) of
Proposition 4.11. These conditions are easily verified in the standard cases such as those of [18, 26,
35].

Corollary 4.13. Suppose T is the monad associated to the Boardman-Vogt replacement of either
the associative or the commutative operad (so it is an A∞ or E∞ operad) acting on Mod R . Then the
T-algebra spectral sequence can be applied to any T-algebras X and Y .
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5. Computations

5.1. G-actions
The next two examples provide, respectively, an example of a non-trivial G-map which is trivial

as a homotopy G-map and an example of a non-trivial homotopy G-map which does not lift to a G-
map. We emphasize that we are working in the projective model structure for G-objects discussed in
Section 4.4.2 and as a consequence the derived space of equivariant maps is modeled by the homotopy
fixed points of the underlying derived space of maps.

Example 5.1. Regard R as a C2-space via the sign action. Then applying one point compactification
to the inclusion

{0}→R

yields an essential map
eσ : S0 → Sσ

of pointed C2-spaces.
We use the trivial map as a base point for the T-algebra spectral sequence computing the derived

space of pointed C2-equivariant maps between S0 and Sσ. We can identify the E2 term as follows: 3:

Es,t
2 = Hs(C2;πtSσ)=⇒πt−s(Sσ)hC2 .

As noted in Remark 4.9, eσ must represent the trivial map in the category of pointed homotopy C2-
spaces. The spectral sequence confirms this since E0,0

2 = (π0Sσ)C2 = 0. In fact, since the homotopy
groups of S1 are concentrated in degree 1, this spectral sequence is concentrated on the line t = 1 and
necessarily collapses at E2. Computing the group cohomology with coefficients π1(Sσ) ∼= Z twisted
by the sign action, we see that the only non-zero contribution is from E1,1

2 = Z/2, which detects the
essential map eσ above.

Example 5.2. Let C2 act on KU via complex conjugation. The C2-action on π∗KU is trivial precisely
on those homotopy groups generated by even powers of the Bott map. In particular, if we regard S4

as having a trivial C2 action we obtain a non-trivial map

β2 : S4 → KU

in the category of homotopy C2-spectra.
The T-algebra spectral sequence computing the homotopy groups of the space of C2-equivariant

maps from S0 to KU is a connective cover of the homotopy fixed point spectral sequence (see Fig-
ure 5.3). The latter spectral sequence converges to the homotopy of KO and there is a well-known dif-
ferential d3(β2)= η3 (see [45, Prop. 5.3.1]) which follows from a comparison with the Adams-Novikov
spectral sequence and the relation η4 = 0 in π∗S. Since the T-algebra spectral sequence computing
π∗Spectrad

C2
(S4,KU) is just a shift of the T-algebra spectral sequence computing π∗Spectrad

C2
(S0,KU),

we see that the element β2 ∈ E0,0
2 supports a d3 and does not lift to a map of C2-spectra.

3Normally instability, e.g., actions of the fundamental group, prevents getting such a simple description of the E2 term,
however in this case Sσ is non-equivariantly an Eilenberg-MacLane space for Z and so the second half of the refinements in
Remark 4.4 apply.
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Figure 5.3: Homotopy fixed-point spectral sequence for π∗(KUhC2 ) and the T-algebra spectral sequence for
π∗Spectrad

C2
(S4,KU).

5.2. Algebras over an operad in spectra

A∞-algebras in Hk-modules
For one example of Theorem B in action, let k be a field and T the monad

X 7→ TX = ∨
n≥0

Kn ⊗ X∧Hkn

on Hk-module spectra associated to the A∞ operad. Conditions (a) and (b) from Theorem B follow
from Lemma 5.20 and Proposition 5.22 respectively. There it is shown that

Talgπ∗X ∼=
⊕
n≥0

(π∗X )⊗kn

is a monad on graded k-modules whose algebras are graded associative k-algebras.
Of course graded k-modules and graded associative k-algebras satisfy condition (c). In the cat-

egory of associative algebras over π∗Y , the abelian group objects are the square-zero extensions of
π∗Y such as π∗Y St ∼=π∗Y ⊕π∗Σ−tY and hence condition (d) from Theorem B is satisfied.

So we obtain a spectral sequence

Es,t
2 =⇒πt−s A∞Hk-Alg d(X ,Y )

such that
E0,0

2 = k-Alg (π∗X ,π∗Y )

and
Es,t

2 = Hs
Q,π∗Y (π∗X ,π∗Y St

) for t > 0,

where the cohomology groups are calculated in the category of graded associative k-algebras over
π∗Y . For s = 0 these can be identified with the derivations of π∗X into π∗+tY [44, §18] and for s > 0
these are the Hochschild cohomology groups

HHs+1(π∗X ;π∗+tY )∼=Exts+1
π∗X⊗k(π∗X )op (π∗X ,π∗+tY )

of π∗X with coefficients in π∗+tY [41, Prop. 3.6]. Here π∗+tY obtains a π∗X ⊗k (π∗X )op-module
structure by pulling back the π∗Y ⊗k (π∗Y )op-module structure along a fixed algebra map coming
from E0,0

2 .
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Example 5.4. In the category of Hk-modules, consider the A∞ algebra Hk∧Σ∞+ ΩSU(n+1) for each
n ≥ 1. The homotopy of this algebra is a polynomial algebra R = Rn on generators {xi}1≤i≤n with
|xi| = 2i. To compute the A∞ self-maps we take the augmentation map as a base point and apply the
T-algebra spectral sequence. By the discussion above we obtain:

E0,0
2

∼= k-Alg (R,R)∼=
∏

1≤i≤n
(R)2i

E0,t
2

∼=Der(R;Σ−tR)∼=
∏

1≤i≤n
(R)2i+t

Es,t
2

∼=Exts+1
R⊗kRop (R,Σ−tR) for s > 0.

In particular, these groups are zero for t odd, hence E2i = E2i+1. The Hochschild cohomology groups
can be calculated by first pulling back the R ⊗k Rop = R ⊗k R action to a different R ⊗k R action via
the isomorphism defined by

xi ⊗1 7→ xi ⊗1, 1⊗ xi 7→ xi ⊗1−1⊗ xi.

Since 1⊗R ⊂ R⊗R acts trivially on the source we obtain an (R⊗k R)-free resolution of R by applying
R⊗k − to the Koszul resolution of k:

(Λk[σx1, · · · ,σxn]⊗k R → k)
R⊗k−7→ (R⊗kΛk[σx1, · · · ,σxn]⊗k R → R)

Here σxi has bidegree (1,2i) and d(σxi)= 1⊗ xi. Using this resolution and the fact that 1⊗ xi acts by
0 on the target we see that

Ext∗R⊗kRop (R,R)∼= (Λk[σx1, · · · ,σxn])∗⊗k R.

So the Hochschild cohomology groups vanish above cohomological degree n and hence the T-
algebra spectral sequence is concentrated on the first n−1 rows and must collapse at En for n ≥ 2. In
particular, if n = 1 then the spectral sequence collapses at E2 onto the 0-line.

Using the vanishing results in the spectral sequence above, we see that there are no obstructions
to lifting an arbitrary map of k-algebras

H∗ΩSU(n+1)→ H∗ΩSU(n+1)

to a map of A∞ algebras if n ≤ 3 and such a map is unique up to homotopy if n ≤ 2. For n = 1 this
result is expected since ΩSU(2)∼=ΩΣS2 is stably a free A∞ algebra.

The previous computation did not depend on the A∞ algebra Hk∧Σ∞+ ΩSU(n+ 1) so much as
the fact that its ring of homotopy groups is polynomial on generators in even degrees. In particular,
there are no obstructions to lifting an abstract algebraic isomorphism to an equivalence if there are
sufficiently few generators:

Proposition 5.5. Let Rn be a polynomial algebra on n generators in even degrees. Then for n ≤ 3,
there is a unique Hk-algebra V up to homotopy such that π∗V ∼= Rn. In particular, all such algebras
are weakly equivalent to the commutative Hk-algebra HRn.

E∞-algebras in rational Hk-modules
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For the remainder of this section we will study E∞-algebra maps in the category of Hk-modules
for some field k of characteristic 0. To identify the E2 term we will again apply Theorem B. We first
check the hypotheses. Conditions (a) and (b) follow from Lemma 5.20 and Proposition 5.24 respec-
tively. The verification of condition (c) is immediate from the identification of Talg in Proposition 5.24
as the free graded commutative k-algebra monad. The verification of condition (d) proceeds exactly as
in the A∞-case above and the associated Quillen cohomology groups are the classical André-Quillen
cohomology groups for graded commutative k-algebras.

Example 5.6. If we allow n to go to infinity in Example 5.4 then ΩSU ' BU is an infinite loop space
and consequently Hk∧Σ∞+ ΩSU is an E∞ algebra in Hk-modules.

We have the following identification of the E2-term, where

R = H∗(ΩSU)∼= k[xi]i≥1

and k-CAlg is the category of commutative k-algebras:

E0,0
2

∼= k-CAlg (R,R)∼=
∏
i≥1

(R)2i

E0,t
2

∼=Der(R;Σ−tR)∼=
∏
i≥1

(R)2i+t

Es,t
2

∼= Hs
AQ,k(R;Σ−tR) for t > 0.

Since R is a polynomial algebra over k, it is smooth and by Proposition 5.11 all higher André-
Quillen cohomology groups vanish. As a consequence we see the spectral sequence collapses at E2
onto the 0-line. Hence every map of homology rings lifts to a homotopically unique map of E∞
algebras in Hk-modules.

In general, free algebras have collapsing spectral sequences:

Example 5.7. If X = TM is a free E∞ ring spectrum then the unit map X → TX is a map of E∞ ring
spectra and defines a section of the bar resolution. Consequently the T-algebra spectral sequence
computing the homotopy of Ed∞(X ,Y ) collapses at E2 onto the 0-line. So in this case the edge homo-
morphism π0Ed∞(X ,Y ) → H∞(X ,Y ) is an isomorphism. Moreover there is a homotopy equivalence
Ed∞(X ,Y )' Spectrad(M,Y ).

Remark 5.8. Since rational localization is smashing, the extension functor from E∞ algebras to E∞
algebras in HQ modules is an equivalence for every rational E∞ ring spectrum. From this we obtain
for any rational E∞ ring spectra X and Y

Ed
∞(X ,Y )' E∞HQ-Alg d(HQ∧ X ,Y )' E∞HQ-Alg d(X ,Y ).

So there is no difference homotopically between the space of E∞ maps between two rational E∞ rings
and the space of E∞ algebra maps in HQ-modules.

Example 5.9. We will now construct infinitely many homotopically distinct E∞ maps that all induce
the same H∞ map. For a space X , recall that the cotensor HQX is an E∞ ring spectrum satisfying
π∗HQX ∼= H−∗(X ;Q). Now to calculate the homotopy groups of Ed∞(HQS2

,HQS3
) we apply the T-

algebra spectral sequence and use the identification of the E2-term above. As a base point we will
take a ‘trivial’ map ε of E∞ rings induced by a map of the form S3 →∗→ S2.
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Let Ind∗A denote the graded module of indecomposables of an augmented graded commutative
algebra A. To calculate the E2 term we have

E0,0
2

∼=Q-CAlg
(
π∗HQS2

,π∗HQS3
)∼= Ind−3

(
π∗HQS2

)
= 0= {ε}.

For t > 0 we use the map ε to regard π∗HQS2
as a commutative algebra over π∗HQS3

and obtain

Es,t
2

∼= Hs
AQ

(
π∗HQS2

;π∗+tHQS3
)∼= ho(sQ-CAlg ↓π∗HQS3 )

(
π∗HQS2

,π∗HQS3 ⊕Σs
Qπ∗+tHQS3

)
where the right-hand side is the derived homomorphisms of simplicial graded commutativeQ-algebras
over the simplicially constant graded algebra π∗HQS3

into the square-zero extension of this algebra
by the sth suspension of π∗+tHQS3

in simplicial π∗HQS3
-modules. To simplify the notation, we

will present the slightly more general calculation of the André-Quillen cohomology of an exterior
Q-algebra on an even-degree generator and for arbitrary coefficients. To calculate these derived ho-
momorphisms we must first construct a cofibrant replacement of the source.

The cofibrant replacement of an exterior algebra (viewed as a constant simplicial object) on an
element in degree 2n can be constructed as a two stage cell complex: We take the free algebra Q[e2n]
on an element of degree 2n and then cone off (in simplicial graded commutative Q-algebras) e2

2n via
an element f4n. In other words, A is defined by the following homotopy pushout diagram in simplicial
graded commutative Q-algebras:

Q[ f4n]
f4n 7→e2

2n
//

��

Q[e2n]

��

Q[Cone f4n]'Q // A

Each simplicial homotopy group πs A of this two-stage complex is a graded Q-module. Since ho-
motopy pushouts of simplicial commutative algebras are derived tensor products we find

πs A ∼=TorQ[ f4n]
s (Q,Q[e2n])))∼=

{
Q[e2n]/(e2

2n) if s = 0,
0 otherwise.

By construction A is a cofibrant replacement of our exterior algebra. On further inspection we can see
this is a cofibrant replacement in the category of simplical graded commutative algebras augmented
over Q.

To calculate the André-Quillen cohomology of a commutative algebra over B we first construct a
cofibrant replacement A as above and regard it as a commutative algebra over B via the given map.
For example, in our case we have

A '−→Q[e2n]/(e2
2n) ε−→ B.

If M is a B-module we can construct the square-zero extension B⊕ΣsM whose simplicial homotopy
groups are concentrated in degrees 0 and s. By applying the Quillen left adjoint B⊗− to the domain
algebra we obtain an isomorphism:

sQ-CAlg ↓B(A,B⊕ΣsM)∼= sAug -B-CAlg (B⊗ A,B⊕ΣsM).

There is an equivalence of categories between augmented commutative algebras over B and non-

unital commutative B-algebras. This equivalence sends an algebra B → C
f−→ B to IB(C) = ker f .
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Figure 5.10: T-algebra spectral sequence for E∞ maps HQS2 → HQS3
.

Maps into the square-zero extension B⊕ΣsM in augmented commutative B-algebras correspond to
B-module maps from IB(C)/IB(C)⊗B2 to ΣsM. In our case, since the augmentation A → B factors
through an augmentation to Q, and every Q-module is flat, we have

IB(B⊗ A)/
(
IB(B⊗ A)⊗B2)∼= B⊗ (

IQ(A)/IQ(A)⊗2)= B⊗ Ind(A).

Here we are taking indecomposables levelwise to obtain a simplicial B-module B⊗ Ind(A). Putting
this together we see that

sQ-CAlg ↓B(A,B⊕ΣsM)∼= sB-Mod (B⊗ Ind(A),ΣsM)∼= sMod Q(Ind(A),Σs(M)).

Since the indecomposables functor is a Quillen left adjoint by Proposition 3.5, it takes the cellular
pushout diagram of simplicial augmented graded commutative Q-algebras defining A to a homotopy
pushout diagram of simplicial graded commutative Q-modules:

Q{ f4n} 0
//

��

Q{e2n}

��

Ind(Q[Cone f4n])' 0 // Ind(A)'Q{e2n}⊕Σ1Q{ f4n}

If we let Mk denote the degree k portion of M we see that

ho(sMod Q)(Ind(A),ΣsM)=


M2n if s = 0,
M4n if s = 1,
0 otherwise.

In our case, n =−1 and M = π∗+tHQS3
, so ho(sMod Q)(Ind(A),ΣsM) consists of a copy of Q when

(s, t) ∈ {(0,−1), (0,2), (1,1), (1,4)} and is zero otherwise. Ignoring the non-contributing term in bidegree
(0,−1), we obtain the E2-term in Figure 5.10.

All other entries are trivial so the spectral sequence collapses at E2. The Q in E1,1
2 detects an

infinite family of homotopically distinct E∞ maps which, because they land in positive filtration,
induce the same H∞ map ε. It can be shown that this infinite family is generated by the morphism
of E∞ rings induced by the Hopf map S3 → S2 [39, § 3.2].

In the previous example, the spectral sequence vanished above the 1-line. This guaranteed the
collapse of the spectral sequence and provided an algebraic description of the homotopy groups of the
space of E∞ maps. This is because the map Q→ π∗HQS2

is a local complete intersection morphism
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and hence the higher André-Quillen cohomology groups vanish. We will say a morphism A → B of
graded commutative rings is formally a local complete intersection, resp. smooth, resp. étale, if the
relative cotangent complex LB/A [41] has projective dimension at most one, resp. is projective, resp. is
contractible.

Proposition 5.11. Suppose f : k → R and k → S are morphisms of rational E∞ rings. Suppose the
E2 term of the T-algebra spectral sequence computing the space of E∞ ring maps under k between
R and S can be identified with the André-Quillen cohomology of π∗R in π∗k-algebras as above. Then
if the morphism f on homotopy groups is

1. formally a local complete intersection then the spectral sequence collapses at the E2 page onto
the 0 and 1 lines and every H∞ map in k-modules can be realized by an E∞ map, although
possibly non-uniquely.

2. formally smooth then the spectral sequence collapses at the E2 page onto the 0-line and every
H∞ map in k-modules can be realized, uniquely up to homotopy, by an E∞ map.

3. formally étale then the spectral sequence collapses at the E2 page and Es,t
2 = 0 if t > 0. As a

consequence, the mapping space is homotopically discrete and every H∞ map in k-modules can
be realized, up to a contractible space of choices, by an E∞ map.

Proof. All of the results follow from the vanishing of the relevant André-Quillen cohomology groups
[41, Thm. 2.4 (ii)] and our identification of E0,0

2 with the set of H∞ maps.

We remark that in the previous proposition one can make the necessary E2 identification when
π∗R is a free π∗k-module.

Example 5.12. We now construct examples of H∞ ring maps that do not lift to E∞ ring maps. The
argument below does not make explicit use of the spectral sequence beyond the identification of the
H∞ maps, although it does have consequences for its behavior.

Let M be the Heisenberg 3-manifold: the quotient of the group of uni-upper triangular 3×3 real
matrices by the subgroup with all integer entries. Since M is a quotient of a contractible group by a
discrete subgroup it is a K(π,1). The commutator subgroup of π is free abelian of rank one and π fits
into the short exact sequence of groups

1→Z→π→Z×Z→ 1.

In particular M is a nilpotent space.
Applying the classifying space functor to the above exact sequence we see that up to homotopy, M

can also be realized as the total space of an S1 bundle over the torus T2. This S1 bundle is classified
by the generator of Z∼= H2(T2;Z)∼= [T2,BS1].

A computation with the Serre spectral sequence shows π∗HQM is generated by exterior classes x
and y in degree -1, polynomial classes α and β in degree -2, which satisfy

0= xy=α2 =β2 =αβ= xα= yβ= xβ− yα.

As a consequence we see:

(5.13) H∞(HQM ,HQS2
)∼= E0,0

2
∼= Ind−2(π∗HQM)=Q{α,β}.

There are also Massey product identifications α ∈ 〈x, x, y〉 and β ∈ 〈y, y, x〉 with indeterminacy

0= xH1(M;Q)+H1(M;Q)y.
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Any map from HQM to HQS2
sends x and y to zero for degree reasons. Now α and β are Massey

products in x and y and Massey products in HQ∗M correspond to Toda brackets in HQM . Since
E∞ maps preserve Toda brackets, they must also send α and β to zero. So α and β must support
differentials and correspond to H∞ maps which do not lift to E∞ maps.

The behavior of this spectral sequence is explained further in [39], where it is shown that this
spectral sequence is converging to

π∗Topd(S2,K(π,1)Q)∼=π∗(Ω2K(π,1)×K(π,1)Q)∼=π∗K(π,1)Q.

In particular all non-trivial elements in the t− s = 0 column, including α and β, must support a
differential.

5.3. Coker J and maps of E∞ ring spectra
The following example is a joint result of the second named author and Nick Kuhn.
For this example we will need to recall the definitions of some classical infinite loop spaces and

their associated connective spectra [24, p.271]. Let SL1S0 = GL1S0〈0〉 denote the 1-component of
QS0. Let us fix an odd prime p and let q be an integer generating (Z/p2)×. Define J to be the fiber of
the map

BU⊗ ψq /Id−−−−→ BU⊗

where BU⊗ is the 1-component of p-local K-theory and ψq is the qth Adams operation. The d-
invariant defines a map S0 → KU which restricts to a map SL1S0 D−→ BU⊗ which in turn lifts to a
map SL1S0 D−→ J. Let Coker J be the fiber of this last map.

At the prime 2 there are several possible definitions of J and consequently several possible defi-
nitions of Coker J. A perfectly reasonable approach is to set J to be the fiber of the map

(5.14) BO⊗ ψ3/Id−−−−→ BO⊗.

However this introduces some homotopy groups in low degrees that are not in the image of D. To
rectify this there are variations where one replaces one or both copies of BO by either its 1- or 2-
connected cover. Rather than go through all the variations we note that all possible choices will yield
the same definition of J after taking 1-connected covers. So we define J to be the 1-connected cover
of the fiber of the map in (5.14). We then set Coker J to be the fiber of the map SL1S0〈1〉 D−→ J defined
as above.

It is a non-trivial classical result that all spaces and maps in sight are infinite loop maps (see [24]
for a survey of these results), but this can be easily deduced from a more modern construction: For
each prime p the above J-space is the simply connected cover of the unit component of the 0th space
of the K(1)-local sphere. The latter spectrum fits into the analogous fiber sequence with K-theory
spectra and the D-invariants are induced by the unit map from the sphere spectrum. It is clear
from this construction that all maps are infinite loop maps. We will follow tradition and denote the
connective spectra associated to these infinite loop spaces with lower case letters.

Example 5.15. Let Σ∞+ Coker J be the unreduced suspension spectrum of the infinite loop space
Coker J and let R be any E∞ ring spectrum. We will show that the T-algebra spectral sequence
computing the homotopy of Ed∞(Σ∞+ Coker J,LK(2)R) collapses at the E2 page onto the 0-line. So in
this case the edge homomorphism

π0Ed
∞(Σ∞

+ Coker J,LK(2)R)→ H∞(Σ∞
+ Coker J,LK(2)R)
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is an isomorphism. Moreover there is a homotopy equivalence of spaces

Ed
∞(Σ∞

+ Coker J,LK(2)R)'Ω∞LK(2)R.

This will follow from the canonical equivalence

Ed
∞(Σ∞

+ Coker J,LK(2)R)' Ed
∞(LK(2)(Σ∞

+ Coker J),LK(2)R),

the following result, and Example 5.7.

Theorem 5.16. [Kuhn-Noel] There is a K(2)-equivalence of E∞ ring spectra

TS0 'Σ∞
+ Coker J

where T is the above monad whose algebras are E∞ ring spectra.

Proof. A consequence of [31, Thm. 2.21] is that for any spectrum X there is a natural map of E∞ ring
spectra

(5.17) TX → LK(2)Σ
∞
+ Ω

∞X

which is an equivalence if X is 2-connected, π3X is torsion, and K(1)∗Ω∞X is trivial.
First we consider the p-local case for an odd prime p. In this case the D-invariant

SL1S0 D−→ J

is at least 2p − 3 connected, hence Coker J is at least 3-connected. As shown in [24, Thm. 2.7],
K(1)∗Coker J is trivial for every prime p. Hence (5.17) is an equivalence for X = coker j.

Delooping the defining fibration for Coker J we obtain a fiber sequence

coker j → sl1S0 d−→ j.

Since j is K(2)-acyclic we have a K(2)-equivalence coker j → sl1S0. The additive H-space structure
on QS0 induces a homotopy equivalence SL1S0 ' QS0

0 between the 1 and 0 components of QS0.
Although this is not a map of infinite loop spaces, applying the Bousfield-Kuhn functor φ2 : hoTop∗ →
ho(LK(2)Spectra) (which factorizes the K(2)-localization functor as LK(2) ' φ2 ◦Ω∞ [30, Thm. 1.1]) to
this equivalence does yield an equivalence LK(2)sl1S0 ' LK(2)S0〈0〉.

Since Eilenberg-MacLane spectra are K(n)-acyclic [42], the defining cofiber sequence for the 0-
connected cover

S0〈0〉→ S0 → HZ

shows that LK(2)S0〈0〉 ' LK(2)S0. Finally we use naturality of the spectral sequence

H∗(Σn;K(2)∗(X )⊗K(2)∗ n)=⇒ K(2)∗((EΣn)+∧Σn X n)

to see that the functor T preserves K(2)-equivalences.
Assembling these results, we obtain the desired zig-zag of equivalences of E∞ ring spectra in the

K(2)-local category
TS0 ← T(S0〈0〉)← Tsl1S0 ← T coker j →Σ∞

+ Coker J.
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At the prime 2 our defining fibration sequence is

Coker J → SL1S0〈1〉 D−→ J.

Here D is 3-connected so Coker J is sufficiently connected. Again [24, Thm. 2.7] shows that K(1)∗Coker J
is trivial. The rest of the argument proceeds as before to obtain a zig-zag of K(2)-local equivalences
of E∞ ring spectra

TS0 ← T(S0〈1〉)← T(sl1S0〈1〉)← T coker j →Σ∞
+ Coker J.

Remark 5.18. Combining this result with [28, 49] one can determine the K(2) and E2-cohomology
of Coker J.

Remark 5.19. The K(1)-local analogue of Example 5.15 is considered in [39, § 3.3].

5.4. Computational lemmas
One of the key steps in obtaining a calculational description of the E2 term is verifying conditions

(a) and (b) from Theorem B. In our examples, condition (a) follows from the following result in the
case R = Hk for some field k:

Lemma 5.20. If M and N are R-modules such that π∗M is projective as a π∗R-module then

πt

(
Mod d

R(M, N)
)∼=Mod π∗R(π∗M,π∗+tN).

Proof. The Ext spectral sequence of [18, Thm. IV.4.1] collapses.

To verify condition (b) from Theorem B we need to find a monad Talg such that there is a natural
isomorphism

π∗T ∼= Talgπ∗.

When T is the monad associated to A∞/E∞-algebras in Hk-modules for suitable k we will identify
Talg. The associated categories of Talg-algebras will be equivalent to graded associative/commutative
k-algebras respectively.

In both of these examples our monad takes the form

TM = ∨
n≥0

Kn ⊗Σn M∧Hkn.

In the E∞ case Kn is a contractible free Σn-space while in the A∞ case it is a free Σn-space which is
weakly equivalent to Σn. The identification of π∗TM as a functor of π∗M in these cases follows from
the following sequence of elementary spectral sequence arguments which we have stated in terms of
a fixed commutative S-algebra R.

Lemma 5.21. If M and N are R-modules such that either π∗M or π∗N is flat as a π∗R module then

π∗(M∧R N)∼=π∗M⊗π∗R π∗N

Proof. The Tor spectral sequence of [18, Thm. IV.4.1] collapses.
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Proposition 5.22. Suppose that M is an R-module spectrum, π∗R is a graded field, and T is the
above monad on R-module spectra whose category of algebras is the category of A∞ algebras in
R-module spectra. Then there is a natural isomorphism

π∗TM ∼= Talgπ∗M := ⊕
n≥0

(π∗M)⊗π∗R n.

Here Talg is the monad on π∗R-modules whose algebras are the associative algebras in that category.

For the E∞ case we will need the following:

Lemma 5.23. If EΣn is a contractible Σn-CW-complex and M is an R-module such that n! is a unit
in π0R then

π∗(EΣn ⊗Σn M∧R n)∼=π∗(M∧R n)/Σn.

Proof. The homotopy orbit spectral sequence

Hs(Σn;πt(M∧R n))=⇒πs+t((EΣn)+∧Σn M∧R n)

collapses by a standard transfer argument since |Σn| = n! acts invertibly on the coefficients.

Proposition 5.24. Suppose that M is an R-module spectrum, π∗R is a graded field with π0R a field
of characteristic 0, and T is the above monad on R-module spectra whose category of algebras is the
category of E∞ algebras in R-module spectra. Then there is a natural isomorphism

π∗TM ∼= Talgπ∗M := ⊕
n≥0

(π∗M)⊗π∗R n/Σn.

Here Talg is the monad on π∗R-modules whose algebras are the commutative algebras in that cate-
gory.
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