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Nilpotence in the Symplectic Bordism Ring

Justin Noel

Abstract. We prove a folklore result which gives a sequence of necessary

and sufficient conditions for a stably symplectic manifold to define a nilpotent

element in the symplectic bordism ring.

The purpose of this note is to prove the following result:

Theorem 1. Let M be a stably symplectic manifold. Then the following are
equivalent:

(1) For all sufficiently large n, M×n, the n-fold cartesian product of M with
itself bounds a stably symplectic manifold.

(2) There exists a positive integer n, such that
∐
nM , the n-fold disjoint

union of M with itself bounds a stably symplectic manifold.
(3) The Pontryagin numbers of M vanish.
(4) M bounds a stably complex-manifold.
(5) M bounds an oriented manifold.

The author would like to thank Nigel Ray for politely pointing out that the
identification of the nilpotent symplectic bordism classes is folklore. That iden-
tification has been well-known to experts since 1986 to be a consequence of the
nilpotence theorem of [DHS88]. Indeed, this method of identifying the nilpotent
classes is mentioned in the introductions of [GR92, BK94] and we will recall it
in Remark 5. As we will see, the remaining equivalences are completely standard.
The author makes no claims of originality for Theorem 1.

We now make the claims in Theorem 1 precise. In this paper all manifolds will
be smooth and compact. A manifold M is called stably symplectic (resp. stably
complex, oriented) if the map

M → BO

classifying the stable tangent bundle of M has a designated lift to BSp (resp. BU ,
BSO) in the homotopy category. Here we are regarding BSp, the classifying space
of the infinite dimensional symplectic group, to be a space over BO via the stan-
dard forgetful map. This map is induced by the group homomorphism which takes
a unitary quaternionic matrix to its underlying orthogonal matrix. A similar con-
struction holds for BU and the forgetful map BSp → BO factors through the
forgetful map from BU . We note that this notion is weaker than the standard geo-
metric notion of a symplectic structure; in particular, we have no restrictions on the
dimension of M . We say that a manifold M bounds a stably symplectic (resp. sta-
bly complex, oriented) manifold if there is another stably symplectic (resp. stably

2010 Mathematics Subject Classification. Primary: 55N22, Secondary: 55P43.

The author was partially supported by CRC 1085 - Higher Invariants, Regensburg.

c©0000 (copyright holder)

1



2 JUSTIN NOEL

complex, oriented) manifold W such that the boundary of W is M and the stable
tangential structure on M is the restriction of the stable tangential structure on W
to the boundary.

The bordism classes of stably symplectic manifolds form a graded ring which
can be identified, via the Pontryagin-Thom construction, with π∗MSp, the ho-
motopy groups of the Thom spectrum MSp. Using the machinery of [ABG+08]
this Thom spectrum can be obtained by applying the Thom construction to the
composite map

BSp
i−→ BO

j−→ BGL1S.

Here i is the forgetful map above. Since the forgetful map respects direct sums
and the direct sum operation induces the infinite loop space structures on BSp and
BO, one can show that i is a map of infinite loop spaces. The space BGL1S is the
classifying space for stable spherical fibrations and the map j is a delooping of the
classical J-homomorphism which is known to be an infinite loop map. Since both
i and j are infinite loop maps, MSp has an induced E∞-ring structure [LMS86,
§IX.7]. The induced multiplicative structure on π∗MSp agrees with the bordism
ring structure. Under this isomorphism, addition corresponds to the disjoint union
of manifolds and multiplication corresponds to the cartesian product of manifolds.

We should note that we only have partial, albeit extensive, information about
π∗MSp. After inverting 2, Novikov showed that this is a polynomial algebra on
generators in each positive degree divisible by 4 [Nov62], but the two primary
groups are only known through a range. Liulevicius, Nigel Ray, and then Kochman
calculated these groups through degree 6, 19, and 100, respectively [Liu64, Ray72,
Koc93]. Here are the first 15 groups:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Z Z/2 Z/2 0 Z Z/2 Z/2 0 Z2 Z/2 Z/22 0 Z3 Z/22 Z/22

There are a lot of non-trivial products, in particular the class η ∈ π1MSp acts non-
trivially on many of the classes above and the square of the generator in degree 4
is 4 times a generator in degree 8. By [BK94, Thm. B] the 2-torsion in π∗MSp
is unbounded. Note that it follows from Theorem 1 that all of the non-nilpotent
classes are in degrees divisible by 4 and that these classes are detected in Novikov’s
calculation.

Now let [M ] ∈ π∗MSp be the cobordism class of a stably symplectic manifold
M . We will prove Theorem 1 by showing that all of the stated conditions are
equivalent to the following property:

[M ] ∈ ker(π∗MSp
h−→ H∗(MSp;Z))

where h is the integral Hurewicz map (which is a map of graded rings). Since
symplectic bundles are oriented we have a Thom isomorphism of graded rings
H∗(MSp;Z) ∼= H∗(BSp;Z).

To understand this ring and the behavior of the Hurewicz map, we now recall
some well-known results from the theory of characteristic classes:

Proposition 2.

(1) H∗(BSp;Z) ∼= Z[x4i]i≥1, where |x4i| = 4i.
(2) The composite of the forgetful maps

H∗(BSp;Q) ∼= Q[x4i]i≥1 → H∗(BU ;Q)→ H∗(BSO;Q) ∼= Q[y4i]i≥1

is an isomorphism of graded rings.
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π∗MSp H∗(MSp;Z) H∗(MSp;Q)

π∗MU H∗(MU ;Z) H∗(MU ;Q)

π∗MSO H∗(MSO;Z) H∗(MSO;Q)

Figure 3. The Hurewicz homomorphisms with marked injections

(3) The forgetful map

H∗(BSp;Q)→ H∗(BU ;Q) ∼= Q[b2i]i≥1

is an injection.

Proof. It is well known that H∗(BSp;Z) is a polynomial algebra in the sym-
plectic Pontryagin classes {P4i}i≥1 and is abstractly isomorphic as a Hopf algebra

to H∗/2(BU ;Z). The identification of the coalgebra structure is equivalent to the
standard identity

P4n(ξ1 ⊕ ξ2) =
∑

1≤i≤n

P4i(ξ1)P4(n−i)(ξ2)

where ξ1 and ξ2 are two symplectic vector bundles. Since the cohomology ring
is torsion free and finitely generated in each degree we see that H∗(BSp;Z) is
abstractly isomorphic to H∗/2(BU ;Z) as Hopf algebras.

The second claim follows by duality from the well known, and easily proven,
dual claim in cohomology and the third claim follows from the second. �

Proof of Theorem 1. First we show that [M ] is nilpotent if and only if [M ]
is in the kernel of the integral Hurewicz map h. We will use this characterization
repeatedly below. By Proposition 2.(1) we see that H∗(MSp;Z) is reduced, i.e.,
there are no nilpotent elements. So if [M ] is nilpotent then [M ] ∈ kerh. Our
contribution is the converse, for which we use the E∞ structure on MSp and apply
[MNN14, Thm. A] which states that, under this hypothesis, every element in the
kernel of h is nilpotent.

Since H∗(MSp;Z) is torsion free, if [M ] is torsion then [M ] ∈ kerh. If [M ] is
not torsion then it has non-trivial image in π∗MSp⊗Q ∼= H∗(MSp;Q). Since the
rational Hurewicz map factors through the integral Hurewicz map (see Figure 3),
we see that [M ] can not be in the kernel of h. Since [M ] is torsion if and only
if condition (2) from Theorem 1 holds, we see that conditions (1) and (2) are
equivalent.

Now if we write H∗(MSp;Z) ∼= Z[x4i]i≥1, then the Hurewicz image of [M ] has
the following form

h[M ] =
∑

nαx
α.

Here the sum is over all the monomials xα in the variables {x4i}i≥1 whose total
degree is the dimension of M . By a standard argument (see [Swi02, pp. 401-402])
we see that

nα = 〈Pα(ν), σM 〉.
Here Pα is the characteristic class dual to xα, ν is the stable normal bundle of M ,
and σM is the fundamental class of M . These coefficients are, by definition, the
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Pontryagin numbers of M . Clearly h[M ] = 0 if and only if these numbers vanish.
So conditions (1) and (3) are equivalent.

We now show condition (1) is equivalent to conditions (4) and (5) simultane-
ously. By naturality of the Hurewicz homomorphisms we see that if h[M ] = 0 then
it has trivial image in H∗(MU ;Z) and H∗(MSO;Z). Since π∗MU is torsion free,
the rational Hurewicz map π∗MU → H∗(MU ;Q) ∼= π∗MU ⊗ Q is an injection
which implies the integral Hurewicz map π∗MU → H∗(MU ;Z) is an injection.
Similarly π∗MSO → H∗(MSO;Z) is an injection because the composite map

π∗MSO → H∗(MSO;Z)→ H∗(MSO;Z/2)×H∗(MSO;Q)

is an injection [Mil60, Cor. 1]. It follows that if h[M ] = 0 then [M ] has trivial
image in the complex and oriented bordism rings (see Figure 3). Conversely if
[M ] has trivial image in either of these bordism rings then it has trivial image in
H∗(MSO;Q). Since H∗(MSp;Z) injects into H∗(MSO;Q) we see that h[M ] = 0.

�

Remark 4. The injectivity of the integral Hurewicz map for complex bordism
is equivalent to the claim that a complex manifold is a boundary if and only if all of
its Chern numbers vanish. Similarly an oriented manifold is a boundary if and only
if its Stiefel-Whitney and Pontryagin numbers vanish. It follows from Theorem 1
that for stably symplectic manifolds the vanishing of the Pontryagin numbers implies
the vanishing of all of the Chern and Stiefel-Whitney numbers. Of course this can
be independently verified via elementary arguments with characteristic classes.

Remark 5. We now show how the equivalence of conditions (1) and (2) in
Theorem 1 was originally deduced from the nilpotence theorem of [DHS88]. The
nilpotence theorem implies that that the kernel of the MU∗-Hurewicz homomor-
phism

hMU : π∗MSp→MU∗MSp

is nilpotent. Since we already known that the torsion free summand of π∗MSp is
non-nilpotent we just need to show that this kernel contains all of the torsion in
π∗MSp. This will follow from the fact that MU∗MSp is torsion free. Indeed the
Atiyah-Hirzebruch spectral sequence

H∗(MSp;MU∗) ∼= H∗(MSp;Z)⊗MU∗ =⇒MU∗MSp

collapses for degree reasons. This is a free MU∗-algebra and hence there are no
extension problems.
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