Equivariant cohomology of representation spheres and $\text{Pic}(S_G)$-graded homotopy groups

Justin Noel

Max Planck Institute for Mathematics

March 14, 2013
Question

What should homology and cohomology groups be indexed over?

Normally $H^* (X)$ and $H_* (X)$ is graded over \mathbb{N}. Generalized (co)homology (e.g., K-theory) is graded over \mathbb{Z}. Equivariant (co)homology is graded over \mathbb{N} and sometimes $RO(G)$.

Justin Noel

UniBonn, MPIM
Question

What should homology and cohomology groups be indexed over?

- Normally $H_*(X)$ and $H^*(X)$ is graded over \mathbb{N}.
Question

What should homology and cohomology groups be indexed over?

- Normally $H_\ast(X)$ and $H^\ast(X)$ is graded over \mathbb{N}.
- Generalized (co)homology (e.g., K-theory) is graded over \mathbb{Z}.
Gradings

Question
What should homology and cohomology groups be indexed over?

- Normally $H_\ast(X)$ and $H^\ast(X)$ is graded over \mathbb{N}.
- Generalized (co)homology (e.g., K-theory) is graded over \mathbb{Z}.
- Equivariant (co)homology is graded over \mathbb{N} and sometimes $RO(G)$.

Justin Noel
UniBonn, MPIM
One way to think of gradings

- Cohomology theories ↔ spectra.
One way to think of gradings

- Cohomology theories \leftrightarrow spectra.
- Suppose $X \in \text{Top}_* \subset \text{Spectra}$, $M \in \text{AbGroup}$.

Similarly for generalized (co)homology.
One way to think of gradings

- Cohomology theories ↔ spectra.
- Suppose $X \in \text{Top}_\ast \subset \text{Spectra}$, $M \in \text{AbGroup}$.
- Then $\exists HM$ in spectra, satisfying
One way to think of gradings

- Cohomology theories \leftrightarrow spectra.
- Suppose $X \in \text{Top}_\ast \subset \text{Spectra}$, $M \in \text{AbGroup}$.
- Then $\exists H M$ in spectra, satisfying

$$[S^i, H M \wedge X] \cong H_i(X; M)$$

(always reduced).
One way to think of gradings

- Cohomology theories ↔ spectra.
- Suppose $X \in \text{Top}_* \subset \text{Spectra}$, $M \in \text{AbGroup}$.
- Then $\exists HM$ in spectra, satisfying
 \[
 [S^i, HM \wedge X] \cong H_i(X; M)
 \]
 (always reduced).
- $[S^i \wedge X, HM] \cong H^{-i}(X; M)$
One way to think of gradings

- Cohomology theories ↔ spectra.
- Suppose \(X \in \text{Top}_* \subset \text{Spectra}, M \in \text{AbGroup}. \)
- Then \(\exists HM \) in spectra, satisfying

\[
[S^i, HM \wedge X] \cong H_i(X; M)
\]

(always reduced).

\[
[S^i \wedge X, HM] \cong H^{-i}(X; M) \ (\exists S^{-i}).
\]
Cohomology theories ↔ spectra.

Suppose $X \in \text{Top}_\ast \subset \text{Spectra}$, $M \in \text{AbGroup}$. Then $\exists HM$ in spectra, satisfying

$$[S^i, HM \wedge X] \cong H_i(X; M)$$

(always reduced).

$$[S^i \wedge X, HM] \cong H^{-i}(X; M) (\exists S^{-i}).$$

Similarly for generalized (co)homology.

Justin Noel
UniBonn, MPIM
Indexing by spheres

\[E_*(-), \ E^*(-), \ * \in \mathbb{Z}. \]
Indexing by spheres

- $E_*(-), E^*(-), * \in \mathbb{Z}$.
- $\mathbb{Z} \cong \{S^i\}_{i \in \mathbb{Z}}$.
Indexing by spheres

- $E_*(-), \ E^*(-), \ * \in \mathbb{Z}$.
- $\mathbb{Z} \cong \{S^i\}_{i \in \mathbb{Z}}$.
- $i + j \in \mathbb{Z} \leftrightarrow S^i \wedge S^j \simeq S^{i+j}$.
Indexing by spheres

- $E_*(-), E^*(-), * \in \mathbb{Z}$.
- $\mathbb{Z} \cong \{S^i\}_{i \in \mathbb{Z}}$.
- $i + j \in \mathbb{Z} \leftrightarrow S^i \wedge S^j \simeq S^{i+j}$.
- So \mathbb{Z}-grading \leftrightarrow ‘sphere-grading.’
Indexing by spheres

- $E_*(-), E^*(-), * \in \mathbb{Z}$.
- $\mathbb{Z} \cong \{S^i\}_{i \in \mathbb{Z}}$.
- $i + j \in \mathbb{Z} \leftrightarrow S^i \wedge S^j \simeq S^{i+j}$.
- So \mathbb{Z}-grading \leftrightarrow ‘sphere-grading.’
- Sign conventions come from
Indexing by spheres

- $E_*(-), E^*(-), * \in \mathbb{Z}$.
- $\mathbb{Z} \cong \{S^i\}_{i \in \mathbb{Z}}$.
- $i + j \in \mathbb{Z} \leftrightarrow S^i \wedge S^j \simeq S^{i+j}$.
- So \mathbb{Z}-grading \leftrightarrow ‘sphere-grading.’
- Sign conventions come from

$$\tau : S^i \wedge S^j \rightarrow S^j \wedge S^i$$

which has degree $(-1)^{i,j}$.
Why spheres?

- They are small, so wedge axiom holds:

\[E_i(\bigvee X_j) \cong \bigoplus_{j \in J} E_i(X_j). \]
Why spheres?

- They are small, so wedge axiom holds:

\[E_i(\bigvee_{j \in J} X_j) \cong \bigoplus_{j \in J} E_i(X_j). \]

- The existence of inverses gives suspension isomorphisms:
Why spheres?

- They are small, so wedge axiom holds:

$$E_i(\bigvee_{j \in J} X_j) \cong \bigoplus_{j \in J} E_i(X_j).$$

- The existence of inverses gives suspension isomorphisms:

$$E_i(\Sigma X) \cong E_i(S^1 \wedge X)$$
Why spheres?

- They are small, so wedge axiom holds:
 \[
 E_i(\bigvee_{j \in J} X_j) \cong \bigoplus_{j \in J} E_i(X_j).
 \]

- The existence of inverses gives suspension isomorphisms:
 \[
 E_i(\Sigma X) \cong E_i(S^1 \wedge X) \\
 \cong [S^i, E \wedge S^1 \wedge X]
 \]
Why spheres?

- They are small, so wedge axiom holds:

\[
E_i(\bigvee_{j \in J} X_j) \cong \bigoplus_{j \in J} E_i(X_j).
\]

- The existence of inverses gives suspension isomorphisms:

\[
E_i(\Sigma X) \cong E_i(S^1 \wedge X) \\
\cong [S^i, E \wedge S^1 \wedge X] \\
\cong [S^i \wedge S^{-1}, E \wedge S^1 \wedge X \wedge S^{-1}]
\]
Why spheres?

- They are small, so wedge axiom holds:
 \[E_i(\bigvee_{j \in J} X_j) \cong \bigoplus_{j \in J} E_i(X_j). \]

- The existence of inverses gives suspension isomorphisms:
 \[
 E_i(\Sigma X) \cong E_i(S^1 \wedge X) \\
 \cong [S^i, E \wedge S^1 \wedge X] \\
 \cong [S^i \wedge S^{-1}, E \wedge S^1 \wedge X \wedge S^{-1}] \\
 \cong [S^{i-1}, E \wedge X]
 \]
Why spheres?

- They are small, so wedge axiom holds:

\[E_i(\bigvee_{j \in J} X_j) \cong \bigoplus_{j \in J} E_i(X_j). \]

- The existence of inverses gives suspension isomorphisms:

\[E_i(\Sigma X) \cong E_i(S^1 \wedge X) \]
\[\cong [S^i, E \wedge S^1 \wedge X] \]
\[\cong [S^i \wedge S^{-1}, E \wedge S^1 \wedge X \wedge S^{-1}] \]
\[\cong [S^{i-1}, E \wedge X] \]
\[\cong E_{i-1}(X). \]
Requirements for indices

1. Wedge axiom
Requirements for indices

1. Wedge axiom \implies
Requirements for indices

1. **Wedge axiom** \implies Indexing objects are ‘small’ (dualizable).
Requirements for indices

1. Wedge axiom \implies Indexing objects are ‘small’ (dualizable).
2. Suspension axiom
Requirements for indices

1. Wedge axiom \implies Indexing objects are ‘small’ (dualizable).
2. Suspension axiom \implies
Requirements for indices

1. Wedge axiom \implies Indexing objects are ‘small’ (dualizable).
2. Suspension axiom \implies Indexing objects are invertible.
Requirements for indices

1. Wedge axiom \implies Indexing objects are ‘small’ (dualizable).
2. Suspension axiom \implies Indexing objects are invertible.
3. The (abelian) group of such objects is called the Picard group.
Päuschen
Can define Picard group, \(\text{Pic}(\mathcal{C}) \) for any symmetric monoidal category \(\mathcal{C} \) (dualizable, w/ inverses).
Can define Picard group, \(\text{Pic}(C) \) for any symmetric monoidal category \(C \) (dualizable, w/ inverses).

\[\text{Pic}(S) \cong \mathbb{Z}, \]

Justin Noel
UniBonn, MPIM
Can define Picard group, \(\text{Pic}(C) \) for any symmetric monoidal category \(C \) (dualizable, w/ inverses).

\(\text{Pic}(S) \cong \mathbb{Z} \), so nothing new here.
Can define Picard group, $\text{Pic}(\mathcal{C})$ for any symmetric monoidal category \mathcal{C} (dualizable, w/ inverses).

$\text{Pic}(S) \cong \mathbb{Z}$, so nothing new here.

Want ‘more spheres.’
Representation spheres

Let G be a finite group.
Let G be a finite group.

Take an orthogonal G representation $V = \mathbb{R}^n \odot G$.

Let G be a finite group.

Take an orthogonal G representation $V = \mathbb{R}^n \rtimes G$.

Here is a picture of the unit disc of a non-trivial representation of C_5.

Justin Noel
UniBonn, MPIM
Let G be a finite group.

Take an orthogonal G representation $V = \mathbb{R}^n \odot G$.

Here is a picture of the unit disc of a non-trivial representation of C_5.

![Diagram of a unit disc with colored sections representing a non-trivial representation of C_5.]
Let G be a finite group.

Take an orthogonal G representation $V = \mathbb{R}^n \odot G$.

Here is a picture of the unit disc of a non-trivial representation of C_5.

![Unit Disc Representation](image-url)
Let G be a finite group.

Take an orthogonal G representation $V = \mathbb{R}^n \rtimes G$.

Here is a picture of the unit disc of a non-trivial representation of C_5.
Let G be a finite group.

Take an orthogonal G representation $V = \mathbb{R}^n \circ G$.

Here is a picture of the unit disc of a non-trivial representation of C_5.
Let G be a finite group.

Take an orthogonal G representation $V = \mathbb{R}^n \rtimes G$.

Here is a picture of the unit disc of a non-trivial representation of C_5.
Let G be a finite group.
Take an orthogonal G representation $V = \mathbb{R}^n \circ G$.
Here is a picture of the unit disc of a non-trivial representation of C_5.
To construct S^V, collapse the boundary, $S(V)$, of the unit disc in V to a point.
To construct S^V, collapse the boundary, $S(V)$, of the unit disc in V to a point.
To construct S^V, collapse the boundary, $S(V)$, of the unit disc in V to a point.
To construct S^V, collapse the boundary, $S(V)$, of the unit disc in V to a point.
To construct S^V, collapse the boundary, $S(V)$, of the unit disc in V to a point.

We will need a CW-decomposition on S^V.

Justin Noel
UniBonn, MPIM
To construct S^V, collapse the boundary, $S(V)$, of the unit disc in V to a point.

We will need a CW-decomposition on S^V.

I.e. a CW-decomposition such that G takes cells to cells while never mapping a cell to itself in a non-trivial way.
To construct S^V, collapse the boundary, $S(V)$, of the unit disc in V to a point.

We will need a CW-decomposition on S^V.

I.e. a CW-decomposition such that G takes cells to cells while never mapping a cell to itself in a non-trivial way.

E.g., the color slices above.
Construction gives a morphism $RO(G) \to \text{Pic}(S_G)$.
Construction gives a morphism $RO(G) \to \text{Pic}(S_G)$.

Factors as

$$RO(G) \twoheadrightarrow JO(G) \hookrightarrow \text{Pic}(S_G).$$
Construction gives a morphism $RO(G) \to \text{Pic}(S_G)$.

Factors as

$$RO(G) \twoheadrightarrow JO(G) \hookrightarrow \text{Pic}(S_G).$$

$JO(G) := RO(G)/\sim$.
Construction gives a morphism $RO(G) \rightarrow \text{Pic}(S_G)$.

Factors as

$$RO(G) \twoheadrightarrow JO(G) \hookrightarrow \text{Pic}(S_G).$$

$JO(G) := RO(G)/(\sim).$

$V \sim W \iff S^V \simeq S^W.$
Construction gives a morphism $RO(G) \to \text{Pic}(S_G)$.

Factors as

$$RO(G) \xrightarrow{\sim} JO(G) \xhookrightarrow{} \text{Pic}(S_G).$$

$JO(G) := RO(G)/(\sim)$.

$V \sim W \iff S^V \simeq S^W$.

Let us find a toy case where we can compute groups indexed over Pic(S_G).
Known results

Theorem (tom Dieck-Petrie)

\[\text{Rank } JO(G) = \text{Rank } \text{Pic}(S_G) \iff G \text{ is nilpotent.} \]
Known results

Theorem (tom Dieck-Petrie)

\[\text{Rank } JO(G) = \text{Rank Pic}(S_G) \iff G \text{ is nilpotent.} \]

Theorem (Kawakubo)

\[JO(G) \cong \text{Pic}(S_G) \iff G = C_n \text{ or } D_{2 \cdot 2^n}. \]
Theorem (Kawakubo)

\[\text{JO}(S_{C_n}) \cong \text{Pic}(S_{C_n}) \cong \bigoplus_{d \mid n} \left(\mathbb{Z} \oplus \left(\mathbb{Z}/d\mathbb{Z}^{\times} / \langle \pm 1 \rangle \right) \right). \]
Theorem (Kawakubo)

\[JO(S_{C_n}) \cong \text{Pic}(S_{C_n}) \cong \bigoplus_{d \mid n} \left(\mathbb{Z} \oplus \left(\mathbb{Z}/d \mathbb{Z}^\times/\langle \pm 1 \rangle \right) \right). \]

- Torsion free summands generated by a rotation of order \(d\).
\[\text{Theorem (Kawakubo)} \]

\[JO(S_{C_n}) \cong \text{Pic}(S_{C_n}) \cong \bigoplus_{d|n} \left(\mathbb{Z} \oplus (\mathbb{Z}/d\mathbb{Z}^\times /\langle \pm 1 \rangle) \right). \]

- Torsion free summands generated by a rotation of order \(d \).
- Torsion summand generated by differences of such representations.
Let’s compute the Pic(S_G)-graded homotopy of something.
Let’s compute the Pic(S_G)-graded homotopy of something.

HM?
Let’s compute the Pic(S_G)-graded homotopy of something.

HM?!
• Let’s compute the $\text{Pic}(S_G)$-graded homotopy of something.

• HM?!

• Essentially need to compute the equivariant homology and cohomology of these invertible objects (e.g., representation spheres).
Let’s compute the $\text{Pic}(S_G)$-graded homotopy of something.

HM?!

Essentially need to compute the equivariant homology and cohomology of these invertible objects (e.g., representation spheres).

How do we do this?
Let’s compute the $\text{Pic}(S_G)$-graded homotopy of something.

HM?!

Essentially need to compute the equivariant homology and cohomology of these invertible objects (e.g., representation spheres).

How do we do this?

What should M be equivariantly?
Given a CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of } X\},$$
Reminder: Cellular homology

- Given a CW-complex X let

 $$\tilde{C}_i(X) := \mathbb{Z}\{i\text{-cells of } X\},$$

 $$\tilde{C}_0(X) := \ker(C_0(X) \to C_0(*)).$$
Reminder: Cellular homology

- Given a CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of } X\},$$

$$\tilde{C}_0(X) := \ker(C_0(X) \to C_0(\ast)).$$

- $H_\ast(X) \cong H_\ast \left[\cdots C_{i+1}(X) \overset{\partial}{\to} C_i(X) \overset{\partial}{\to} C_{i-1}(X) \cdots \overset{\partial}{\to} \tilde{C}_0(X) \right].$
Reminder: Cellular homology

- Given a CW-complex X let

 $C_i(X) := \mathbb{Z}\{i\text{-cells of } X\}$,

 $\tilde{C}_0(X) := \ker(C_0(X) \to C_0(\ast))$.

- $H_\ast(X) \cong H_\ast \left[\cdots \to C_{i+1}(X) \xrightarrow{\partial} C_i(X) \xrightarrow{\partial} C_{i-1}(X) \to \cdots \xrightarrow{\partial} \tilde{C}_0(X) \right]$.

- $H^\ast(X)$ is calculated by taking the dual of this complex and then taking cohomology.
Bredon homology with coefficients in \(\mathbb{Z} \)

Given a \(G \)-CW-complex \(X \) let

\[C_i(X) := \mathbb{Z}\{i\text{-cells of } X\} \]
Given a G-CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of } X\} \circ G.$$
Bredon homology with coefficients in \mathbb{Z}

- Given a G-CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of } X\} \otimes G.$$

- For a subgroup $K \leq G$, let $C_i^K(X) \subset C_i(X)$ be the subgroup of K-invariant chains.
Bredon homology with coefficients in \mathbb{Z}

- Given a G-CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of } X\} \circ G.$$

- For a subgroup $K \leq G$, let $C^K_i(X) \subset C_i(X)$ be the subgroup of K-invariant chains.

$$H^K_*(X) \cong H_* \left[\cdots \frac{C^{K}_{i+1}(X)}{\partial} \xrightarrow{\partial} C^K_i(X) \xrightarrow{\partial} C^K_{i-1}(X) \cdots \xrightarrow{\partial} \tilde{C}^K_0(X) \right].$$
Bredon homology with coefficients in \mathbb{Z}

- Given a G-CW-complex X let
 \[C_i(X) := \mathbb{Z}\{i\text{-cells of } X\} \circ G. \]

- For a subgroup $K \leq G$, let $C^K_i(X) \subset C_i(X)$ be the subgroup of K-invariant chains.
 \[H^K_*(X) \cong H_* \left[\cdots C^K_{i+1}(X) \xrightarrow{\partial} C^K_i(X) \xrightarrow{\partial} C^K_{i-1}(X) \cdots \xrightarrow{\partial} \tilde{C}^K_0(X) \right]. \]

- When K is the trivial subgroup: $H^K_*(X) \cong H_*(X)$.

Justin Noel
Bredon homology with coefficients in \mathbb{Z}

- Given a G-CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of } X\} \rtimes G.$$

- For a subgroup $K \leq G$, let $C^K_i(X) \subset C_i(X)$ be the subgroup of K-invariant chains.

$$H^K_*(X) \cong H_* \left[\cdots C^K_{i+1}(X) \xrightarrow{\partial} C^K_i(X) \xrightarrow{\partial} C^K_{i-1}(X) \xrightarrow{\partial} \tilde{C}^K_0(X) \right].$$

- When K is the trivial subgroup: $H^K_*(X) \cong H_*(X)$.

- For cohomology first take the invariants on the cochains.
Mackey functors

- Other coefficient systems?
Mackey functors

- Other coefficient systems?
- Want $H_i^{-}(X)$ to also be an acceptable coefficient system.
Mackey functors

- Other coefficient systems?
- Want \(H_i^{(-)}(X) \) to also be an acceptable coefficient system.
- These functors assign an abelian group to each subgroup of \(G \) and have induction, restriction, and action maps, satisfying some axioms.
Mackey functors

- Other coefficient systems?
- Want $H_i^{(-)}(X)$ to also be an acceptable coefficient system.
- These functors assign an abelian group to each subgroup of G and have induction, restriction, and action maps, satisfying some axioms.
- Such functors should form an abelian category.
Definition: Mackey functors

Definition

$\mathcal{O}(G)$ is the category of finite G-sets and G-morphisms.
Definition: Mackey functors

Definition

$\mathcal{O}(G)$ is the category of finite G-sets and G-morphisms.

Definition

A Mackey functor is a pair

\[
M_* : \mathcal{O}(G) \to \text{AbGroup}
\]

\[
M^* : \mathcal{O}(G)^\text{op} \to \text{AbGroup}
\]

such that
Definition: Mackey functors

\textbf{Definition}

\(\mathcal{O}(G) \) is the category of finite \(G \)-sets and \(G \)-morphisms.

\textbf{Definition}

A Mackey functor is a pair

\[
M_* : \mathcal{O}(G) \to \text{AbGroup}
\]
\[
M^* : \mathcal{O}(G)^{\text{op}} \to \text{AbGroup}
\]

such that

\[
M_*(X) = M^*(X).
\]
Definition: Mackey functors

\[\mathcal{O}(G) \] is the category of finite \(G \)-sets and \(G \)-morphisms.

A Mackey functor is a pair

\[
M_* : \mathcal{O}(G) \to \text{AbGroup}
\]

\[
M^* : \mathcal{O}(G)^{\text{op}} \to \text{AbGroup}
\]

such that

- \(M_*(X) = M^*(X) \).
- \(M^*(X \sqcup Y) = M^*(X) \times M^*(Y) \).
Definition: Mackey functors

\[\mathcal{O}(G) \text{ is the category of finite } G\text{-sets and } G\text{-morphisms.} \]

A Mackey functor is a pair

\[M_* : \mathcal{O}(G) \to \text{AbGroup} \]
\[M^* : \mathcal{O}(G)^{\text{op}} \to \text{AbGroup} \]

such that

- \(M_*(X) = M^*(X). \)
- \(M^*(X \sqcup Y) = M^*(X) \times M^*(Y). \)
- \(M \) satisfies a double coset formula.
Definition explained

- Alternatively, M assigns to each $H \leq G$ an abelian group $M(G/H)$.
Definition explained

- Alternatively, M assigns to each $H \leq G$ an abelian group $M(G/H)$.
- $M(G/H)$ has action of $W_{GH} = N_{GH}/H$.

Justin Noel, UniBonn, MPIM
Definition explained

- Alternatively M assigns to each $H \leq G$ an abelian group $M(G/H)$.
- $M(G/H)$ has action of $W_{GH} = N_{GH}/H$.
- From $H \leq K$
Alternatively M assigns to each $H \leq G$ an abelian group $M(G/H)$.

$M(G/H)$ has action of $W_G H = N_G H/H$.

From $H \leq K$ we obtain a map $\pi: G/H \to G/K$ inducing a restriction maps
Definition explained

- Alternatively, M assigns to each $H \leq G$ an abelian group $M(G/H)$.
- $M(G/H)$ has action of $W_{GH} = N_{GH}/H$.
- From $H \leq K$ we obtain a map $\pi: G/H \to G/K$ inducing a restriction maps

\[M(G/H) \xrightarrow{M_\ast \pi = \text{Res}^K_H} M(G/K) \]
Definition explained

- Alternatively, M assigns to each $H \leq G$ an abelian group $M(G/H)$.
- $M(G/H)$ has action of $W_G H = N_G H / H$.
- From $H \leq K$, we obtain a map $\pi : G/H \to G/K$ inducing a restriction maps

$$M(G/H) \xrightarrow{M_* \pi = \text{Res}^K_H} M(G/K)$$

and a transfer map
Definition explained

- Alternatively M assigns to each $H \leq G$ an abelian group $M(G/H)$.
- $M(G/H)$ has action of $W_{GH} = N_{GH}/H$.
- From $H \leq K$ we obtain a map $\pi : G/H \to G/K$ inducing a restriction maps

$$M(G/H) \xrightarrow{M_* \pi = \text{Res}^K_H} M(G/K)$$

and a transfer map

$$M(G/K) \xrightarrow{M_* \pi = \text{Ind}^K_H} M(G/H).$$
Example: G-Modules

- Given a G-module M
Example: G-Modules

- Given a G-module M we can construct a functor $M(_)$:
Example: G-Modules

- Given a G-module M we can construct a functor $M(-)$:
- $M(G/H) = \text{Mod}_G(\mathbb{Z}[G/H], M)$.
Example: G-Modules

- Given a G-module M we can construct a functor $M(-)$:
 - $M(G/H) = \text{Mod}_G(\mathbb{Z}[G/H], M) \cong M^H$.

Justin Noel UniBonn, MPIM
Example: G-Modules

Given a G-module M we can construct a functor $M(-)$:

- $M(G/H) = \text{Mod}_G(\mathbb{Z}[G/H], M) \cong M^H$.
- For $K \leq H$,

$$M(G/H) = M^H \xrightarrow{\text{Res}_K^H} M(G/K) = M^K$$
Example: G-Modules

- Given a G-module M we can construct a functor $M(-)$:

 $M(G/H) = \text{Mod}_G(\mathbb{Z}[G/H], M) \cong M^H$.

- For $K \leq H$,

 $$M(G/H) = M^H \xrightarrow{\text{Res}^H_K} M(G/K) = M^K$$

 induced by quotient map

 $$q : \mathbb{Z}[G/K] \to \mathbb{Z}[G/H].$$
Example: G-Modules

- Given a G-module M we can construct a functor $M(-)$:
 $$M(G/H) = \text{Mod}_G(\mathbb{Z}[G/H], M) \cong M^H.$$
- For $K \leq H$,
 $$M(G/H) = M^H \xrightarrow{\text{Res}_K^H} M(G/K) = M^K$$
 induced by quotient map
 $$q : \mathbb{Z}[G/K] \to \mathbb{Z}[G/H].$$
- We also have a transfer
 $$M(G/K) = M^K \xrightarrow{\text{Ind}_K^H} M(G/H) = M^H$$
Example: G-Modules

- Given a G-module M we can construct a functor $M(-)$:
 - $M(G/H) = \mathcal{M}od_G(\mathbb{Z}[G/H], M) \cong M^H$.
- For $K \leq H$,
 \[
 M(G/H) = M^H \xrightarrow{\text{Res}_K^H} M(G/K) = M^K
 \]
 induced by quotient map
 \[
 q : \mathbb{Z}[G/K] \to \mathbb{Z}[G/H].
 \]
- We also have a transfer
 \[
 M(G/K) = M^K \xrightarrow{\text{Ind}_K^H} M(G/H) = M^H
 \]
 induced by summing over the fibers of q.
Example: Burnside ring

Definition

Let $A(G)$ be the Grothendieck group of finite G-sets up to iso.
Example: Burnside ring

Definition

Let $A(G)$ be the Grothendieck group of finite G-sets up to iso.

- $[X \sqcup Y] = [X] + [Y]$
Example: Burnside ring

Definition

Let $A(G)$ be the Grothendieck group of finite G-sets up to iso.

- $[X ∪ Y] = [X] + [Y]$
- $[X × Y] = [X][Y]$
Example: Burnside ring

Definition

Let $A(G)$ be the Grothendieck group of finite G-sets up to iso.

- $[X \amalg Y] = [X] + [Y]
- $[X \times Y] = [X][Y]
- $G/H \mapsto A(H)$ is a Mackey functor.
Example: Burnside ring

Definition

Let $A(G)$ be the Grothendieck group of finite G-sets up to iso.

- $[X \sqcup Y] = [X] + [Y]$
- $[X \times Y] = [X][Y]$

- $G/H \mapsto A(H)$ is a Mackey functor.
- Restriction of G-action to H-action defines Res_{H}^{G}.
Example: Burnside ring

Definition

Let $A(G)$ be the Grothendieck group of finite G-sets up to iso.

- $[X \sqcup Y] = [X] + [Y]$
- $[X \times Y] = [X][Y]$

- $G/H \mapsto A(H)$ is a Mackey functor.
- Restriction of G-action to H-action defines Res^G_H.
- Crossing with G/H defines Ind^G_H.
Note

π^*HA

$A(C_9)$

$X = \bigoplus_i G/H_i$ (Decomposition into orbits).

Rank $A(G) = \# \text{Conjugacy classes of subgroups of } G$.

Example (Multiplication Table)

$A(C_9) = \mathbb{Z}\{C_9/C_9, C_9/C_3, C_9\}$

$C_9 \times C_9$ is a free C_9 set with 81 elements.

Justin Noel

UniBonn, MPIM
Note

\[X = \bigsqcup_i G/H_i \] (Decomposition into orbits).
Note

- $X = \bigsqcup_i G/H_i$ (Decomposition into orbits).
- Rank $A(G) = \#\text{ Conjugacy classes of subgroups of } G$.

Justin Noel
UniBonn, MPIM
$A(C_9)$

Note

- $X = \bigsqcup_i G/H_i$ (Decomposition into orbits).
- Rank $A(G) = \#$ Conjugacy classes of subgroups of G.

Example (Multiplication Table)
A(C_9)

Note

- $X = \bigsqcup_i G/H_i$ (Decomposition into orbits).
- Rank $A(G) = \#$ Conjugacy classes of subgroups of G.

Example (Multiplication Table)

$A(C_9) = \mathbb{Z}\{[C_9/C_9], [C_9/C_3], [C_9]\}$

Justin Noel
UniBonn, MPIM
\(A(C_9) \)

Note

- \(X = \bigsqcup_i G/H_i \) (Decomposition into orbits).
- \(\text{Rank } A(G) = \# \text{ Conjugacy classes of subgroups of } G. \)

Example (Multiplication Table)

\[
A(C_9) = \mathbb{Z}\{[C_9/C_9], [C_9/C_3], [C_9]\}
\]

\[
\begin{array}{ccc}
[C_9/C_3] & & \\
[C_9] & & \\
\end{array}
\]
Note

- $X = \bigsqcup_i G/H_i$ (Decomposition into orbits).
- Rank $A(G) = \#$ Conjugacy classes of subgroups of G.

Example (Multiplication Table)

\[A(C_9) = \mathbb{Z}\{[C_9/C_9], [C_9/C_3], [C_9]\} \]

\begin{array}{c|ccc}
[C_9] & [C_9] & \end{array}
A(C_9)

Note
- \(X = \bigsqcup_i G/H_i \) (Decomposition into orbits).
- \(\text{Rank } A(G) = \# \text{ Conjugacy classes of subgroups of } G. \)

Example (Multiplication Table)

\[
A(C_9) = \mathbb{Z}\{[C_9/C_9], [C_9/C_3], [C_9]\}
\]

\[
\begin{array}{ccc}
[C_9] & [C_9] & & \\
\end{array}
\]
A(\(C_9\))

Note

- \(X = \bigsqcup_i G/H_i\) (Decomposition into orbits).
- Rank \(A(G) = \#\) Conjugacy classes of subgroups of \(G\).

Example (Multiplication Table)

\[
A(C_9) = \mathbb{Z}\{[C_9/C_9], [C_9/C_3], [C_9]\}
\]

<table>
<thead>
<tr>
<th></th>
<th>([C_9/C_9])</th>
<th>([C_9/C_3])</th>
<th>([C_9])</th>
</tr>
</thead>
<tbody>
<tr>
<td>([C_9/C_9])</td>
<td>([C_9/C_9])</td>
<td>([C_9/C_3])</td>
<td>([C_9])</td>
</tr>
<tr>
<td>([C_9/C_3])</td>
<td>([C_9/C_3])</td>
<td>([C_9])</td>
<td>?</td>
</tr>
<tr>
<td>([C_9])</td>
<td>([C_9])</td>
<td>([C_9])</td>
<td></td>
</tr>
</tbody>
</table>

\(C_9 \times C_9\) is a free \(C_9\) set with 81 elements.
Note

- $X = \bigsqcup_i G/H_i$ (Decomposition into orbits).
- Rank $A(G) = \#$ Conjugacy classes of subgroups of G.

Example (Multiplication Table)

$$A(C_9) = \mathbb{Z}\{[C_9/C_9], [C_9/C_3], [C_9]\}$$

<table>
<thead>
<tr>
<th></th>
<th>$[C_9/C_9]$</th>
<th>$[C_9/C_3]$</th>
<th>$[C_9]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[C_9/C_9]$</td>
<td>$[C_9/C_9]$</td>
<td>$[C_9/C_3]$</td>
<td>$[C_9]$</td>
</tr>
<tr>
<td>$[C_9/C_3]$</td>
<td>$[C_9/C_3]$</td>
<td>$[C_9]$</td>
<td></td>
</tr>
<tr>
<td>$[C_9]$</td>
<td>$[C_9]$</td>
<td>$9[C_9]$</td>
<td></td>
</tr>
</tbody>
</table>

$C_9 \times C_9$ is a free C_9 set with 81 elements.
Note

- \[X = \bigsqcup_i G/H_i \] (Decomposition into orbits).
- \(\text{Rank } A(G) = \# \text{ Conjugacy classes of subgroups of } G. \)

Example (Multiplication Table)

\[
A(C_9) = \mathbb{Z}\{[C_9/C_9], [C_9/C_3], [C_9]\}
\]

<table>
<thead>
<tr>
<th></th>
<th>([C_9/C_9])</th>
<th>([C_9/C_3])</th>
<th>([C_9])</th>
</tr>
</thead>
<tbody>
<tr>
<td>([C_9/C_9])</td>
<td>([C_9/C_9])</td>
<td>([C_9/C_3])</td>
<td>([C_9])</td>
</tr>
<tr>
<td>([C_9/C_3])</td>
<td>([C_9/C_3])</td>
<td>3([C_9/C_3])</td>
<td>3([C_9])</td>
</tr>
<tr>
<td>([C_9])</td>
<td>([C_9])</td>
<td>3([C_9])</td>
<td>9([C_9])</td>
</tr>
</tbody>
</table>
Example: Burnside ring

- $A(H)$ is a ring such that A is a commutative Green functor.
Example: Burnside ring

- $A(H)$ is a ring such that A is a *commutative Green functor*.
- Res_K^H is a commutative ring map.
Example: Burnside ring

- $A(H)$ is a ring such that A is a *commutative Green functor*.
- Res_K^H is a commutative ring map.
- $\text{Ind}_K^H(a) \cdot b = \text{Ind}_K^H(a \cdot \text{Res}_K^H(b))$.

Every Mackey functor is an A-module.
Example: Burnside ring

- $A(H)$ is a ring such that A is a *commutative Green functor*.
- Res_K^H is a commutative ring map.
- $\text{Ind}_K^H(a) \cdot b = \text{Ind}_K^H(a \cdot \text{Res}_K^H(b))$.
- Every Mackey functor is an A-module.
Example: Burnside ring

- $A(H)$ is a ring such that A is a commutative Green functor.
- Res^H_K is a commutative ring map.
- $\text{Ind}^H_K(a) \cdot b = \text{Ind}^H_K(a \cdot \text{Res}^H_K(b))$.
- Every Mackey functor is an A-module.
- Analogue of \mathbb{Z} equivariantly.
Induced Mackey functors

Definition

Given a Mackey functor M,
Induced Mackey functors

Definition

Given a Mackey functor M let $M \otimes G/H$ be the Mackey functor defined by

$$ (M \otimes G/H)(G/K) = M(G/H \times G/K) $$
Induced Mackey functors

Definition

Given a Mackey functor M let $M \otimes G/H$ be the Mackey functor defined by

$$(M \otimes G/H)(G/K) = M(G/H \times G/K)$$
Induced Mackey functors

Definition

Given a Mackey functor M let $M \otimes G/H$ be the Mackey functor defined by

$$(M \otimes G/H)(G/K) = M(G/H \times G/K)$$

Example

$A \otimes G \cong \mathbb{Z}[G]$
Given a G-CW-complex X let

$$C_i(X) : M \otimes \{i\text{-cells of } X\} \circlearrowleft G.$$
Bredon homology with coefficients in M

- Given a G-CW-complex X let

$$C_i(X) : M \otimes \{i\text{-cells of } X\} \bowtie G.$$

- Chain complex of Mackey functors.
Bredon homology with coefficients in M

- Given a G-CW-complex X let
 \[C_i(X) : M \otimes \{i\text{-cells of } X\} \circlearrowright G. \]

- Chain complex of Mackey functors.
 \[H^K_*(X) \]
Bredon homology with coefficients in M

- Given a G-CW-complex X let

$$C_i(X) : M \otimes \{i\text{-cells of } X\} \circlearrowleft G.$$

- Chain complex of Mackey functors.

$$H^K_*(X) \cong H_* \left[\cdots C_{i+1}(X)(G/K) \xrightarrow{\partial} C_i(X)(G/K) \xrightarrow{\partial} C_{i-1}(X)(G/K) \cdots \xrightarrow{\partial} \tilde{C}_0(X)(G/K) \right]$$
Given a G-CW-complex X let

$$C_i(X) : M \otimes \{i\text{-cells of } X\} \circlearrowright G.$$

Chain complex of Mackey functors.

$$H^K_*(X) \cong H_* \left[\cdots C_{i+1}(X)(G/K) \xrightarrow{\partial} C_i(X)(G/K) \xrightarrow{\partial} C_{i-1}(X)(G/K) \right.$$

$$\cdots \xrightarrow{\partial} \tilde{C}_0(X)(G/K) \right]$$

When $M = \mathbb{Z}$ (trivial action) then we get previous definition.
Bredon homology with coefficients in M

- Given a G-CW-complex X let
 \[C_i(X) : M \otimes \{i\text{-cells of } X\} \circlearrowleft G. \]

- Chain complex of Mackey functors.
 \[
 H^K_*(X) \cong H_* \left[\cdots \overset{\partial}{\longrightarrow} C_{i+1}(X)(G/K) \overset{\partial}{\longrightarrow} C_i(X)(G/K) \overset{\partial}{\longrightarrow} C_{i-1}(X)(G/K) \cdots \overset{\partial}{\longrightarrow} \tilde{C}_0(X)(G/K) \right]
 \]

- When $M = \mathbb{Z}$ (trivial action) then we get previous definition.

- For cohomology one takes a dual complex, with $\text{Ind}^G_H \leftrightarrow \text{Res}^G_H$.
Päuschen
Fix a finite group G and determine explicit models for all of the irreducible real representations of G.
Method of computating $\pi_\star HA$

- Fix a finite group G and determine explicit models for all of the irreducible real representations of G.
- Construct an explicit G-CW decomposition on each irreducible representation sphere.
Fix a finite group G and determine explicit models for all of the irreducible real representations of G.

Construct an explicit G-CW decomposition on each irreducible representation sphere.

Compute $H^*_G(S^V)$ and $H^*_G(S^V)$.

Method of computating $\pi_* HA$
Fix a finite group G and determine explicit models for all of the irreducible real representations of G.

Construct an explicit G-CW decomposition on each irreducible representation sphere.

Compute $H^*_G(S^V)$ and $H^*_G(S^V)$.

Assemble the computations to compute $H^*_G(S^V+W)$.
Consider ρ_n the rotation of order n ($n > 2$)
Consider ρ_n the rotation of order n ($n > 2$)

$$A \otimes C_n \xleftarrow{g^{-1}} A \otimes C_n$$
Consider ρ_n the rotation of order n ($n > 2$)

\[
\sum \quad \Rightarrow
\]

\[
A \otimes C_n \xleftarrow{g^{-1}} A \otimes C_n
\]
Consider ρ_n the rotation of order n ($n > 2$)

\[
\begin{array}{c}
A \xleftarrow{\varepsilon} A \otimes C_n \xrightarrow{g^{-1}} A \otimes C_n \\
\sum
\end{array}
\]
\[H^e_*(S^{\rho_n}; A) \]

\[A \xleftarrow{\epsilon} A \otimes C_n \xrightarrow{g^{-1}} A \otimes C_n \]
$H^e_*(S^{\rho_n}; A)$

$$A \xleftarrow{\epsilon} A \otimes C_n \xleftarrow{g^{-1}} A \otimes C_n$$

Evaluate at C_n/e:

$H^e_0(S^{\rho_n}) \cong 0$

$H^e_1(S^{\rho_n}) \cong 0$

$H^e_2(S^{\rho_n}) \cong Z$
\[H_e^*(S^{\rho_n}; A) \]

\[
A \leftarrow A \otimes C_n \xrightarrow{g^{-1}} A \otimes C_n
\]

Evaluate at \(C_n/e \):

\[
\mathbb{Z} \quad \mathbb{Z}|C_n| \quad \mathbb{Z}|C_n|
\]
\[H^e_\ast(S^{\rho_n}; A) \]

\[A \xleftarrow{\epsilon} A \otimes C_n \xrightarrow{g^{-1}} A \otimes C_n \]

Evaluate at \(C_n/e \):

\[\mathbb{Z} \xleftarrow{\epsilon} \mathbb{Z}|C_n| \xrightarrow{[g]-[1]} \mathbb{Z}|C_n| \]
\[H^e_\ast(S^\rho_n; A) \]

\[A \xleftarrow{\epsilon} A \otimes C_n \xleftarrow{g^{-1}} A \otimes C_n \]

Evaluate at \(C_n/e \):

\[\mathbb{Z} \xleftarrow{\epsilon} \mathbb{Z}|C_n| \xleftarrow{[g]-[1]} \mathbb{Z}|C_n| \]

\[H^e_0(S^\rho_n) \cong 0 \]
$H^e_*(S^{\rho_n}; A)$

$A \xleftarrow{\epsilon} A \otimes C_n \xleftarrow{g^{-1}} A \otimes C_n$

Evaluate at C_n/e:

$\mathbb{Z} \xleftarrow{\epsilon} \mathbb{Z}|C_n| \xleftarrow{[g]-[1]} \mathbb{Z}|C_n|$

$H^e_0(S^{\rho_n}) \cong 0 \quad H^e_1(S^{\rho_n}) \cong 0$
$H^e_\ast(S^{\rho_n}; A)$

$$A \overset{\epsilon}{\leftarrow} A \otimes C_n \overset{g^{-1}}{\leftarrow} A \otimes C_n$$

Evaluate at C_n/e:

$$\mathbb{Z} \overset{\epsilon}{\leftarrow} \mathbb{Z}|C_n| \overset{[g]-[1]}{\leftarrow} \mathbb{Z}|C_n|$$

$H^e_0(S^{\rho_n}) \cong 0 \quad H^e_1(S^{\rho_n}) \cong 0 \quad H^e_2(S^{\rho_n}) \cong \mathbb{Z}$
$H^e_*(S^{\rho_n}; A)$

$$A \xleftarrow{\varepsilon} A \otimes C_n \xrightarrow{g^{-1}} A \otimes C_n$$

Evaluate at C_n/e:

$$\mathbb{Z} \xleftarrow{\varepsilon} \mathbb{Z}|C_n| \xrightarrow{[g]-[1]} \mathbb{Z}|C_n|$$

$$H^e_0(S^{\rho_n}) \cong 0 \quad H^e_1(S^{\rho_n}) \cong 0 \quad H^e_2(S^{\rho_n}) \cong \mathbb{Z}$$

Get $H_*(S^2)$ as expected.
$H_{\ast}^{C_n}(S^{\rho_n}; A)$

$A \xleftarrow{\epsilon} A \otimes C_n \xleftarrow{g^{-1}} A \otimes C_n$
$H^C_n(S^\rho_n; A)$

\[A \xleftarrow{\epsilon} A \otimes C_n \xrightarrow{g^{-1}} A \otimes C_n \]

Evaluate at C_n/C_n:
\[H^C_{\ast n}(S^{\rho_n}; A) \]

\[A \leftarrow A \otimes C_n \xleftarrow{g^{-1}} A \otimes C_n \]

Evaluate at \(C_n/C_n \):

\[A(C_n) \quad \mathbb{Z} \quad \mathbb{Z} \]
\[H^*_{\ast}(S^{\rho_n};A) \]

\[A \leftarrow A \otimes C_n \xrightarrow{g^{-1}} A \otimes C_n \]

Evaluate at \(C_n/C_n \):

\[A(C_n) \xleftarrow{\text{Ind}_{e}^{C_n}} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \]
\[H^C_n(S^\rho_n ; A) \]

\[A \xleftarrow{\epsilon} A \otimes C_n \xrightarrow{g^{-1}} A \otimes C_n \]

Evaluate at \(C_n/C_n \):

\[A(C_n) \xleftarrow{\text{Ind}^C_n} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \]

\[H^C_0(S^\rho_n) \cong A(C_n)/[C_n] \]
\[H^C_\pi(S^{\rho_n}; A) \]

\[A \leftarrow A \otimes C_n \xrightarrow{g^{-1}} A \otimes C_n \]

Evaluate at \(C_n/C_n \):

\[A(C_n) \xleftarrow{\text{Ind}_{C_n}^e} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \]

\[H^C_0(S^{\rho_n}) \cong A(C_n)/[C_n] \quad H^C_1(S^{\rho_n}) \cong 0 \]
$H^C_n(S^{\rho_n}; A)$

\[A \xleftarrow{\epsilon} A \otimes C_n \xleftarrow{g^{-1}} A \otimes C_n \]

Evaluate at C_n/C_n:

\[A(C_n) \xleftarrow{\text{Ind}^C_n} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \]

$H^C_0(S^{\rho_n}) \cong A(C_n)/[C_n]$ \hspace{1cm} $H^C_1(S^{\rho_n}) \cong 0$ \hspace{1cm} $H^C_2(S^{\rho_n}) \cong \mathbb{Z}$
\(\pi_1 \mathcal{H} \)

\[H^*_C(S^{\rho n}; A) \]

\[A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n \]
Evaluate at C_n/C_n:

$$A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n$$
\[H^*_{C_n} (S^\rho_n ; A) \]

\[A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n \]

Evaluate at \(C_n / C_n \):

\[A(C_n) \xrightarrow{\sim} \mathbb{Z} \quad \mathbb{Z} \]

\[\pi_* \mathcal{H} \]
\[H^*_{C_n}(S^{\rho_n}; A) \]

\[A \xrightarrow{\Lambda} A \otimes C_n \xrightarrow{g^{-1}-1} A \otimes C_n \]

Evaluate at \(C_n/C_n \):

\[A(C_n) \xrightarrow{\text{Res}^c_{C_n}} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \]
\[H^*_{C_n} (S^\rho_n ; A) \]

\[
A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n
\]

Evaluate at \(C_n/C_n \):

\[
A(C_n) \xrightarrow{\text{Res}_{C_n}} \mathbb{Z} \to \mathbb{Z}
\]

\[H^0_{C_n} (S^\rho_n) \cong \tilde{A}(C_n) = \ker(A(C_n) \xrightarrow{\text{Res}_{C_n}} \mathbb{Z}) \]
\[H^*_{C_n}(S^{\rho_n}; A) \]

\[A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n \]

Evaluate at \(C_n/C_n \):

\[A(C_n) \xrightarrow{\text{Res}_{C_n}} \mathbb{Z} \rightarrow \mathbb{Z} \]

\[H^0_{C_n}(S^{\rho_n}) \cong \tilde{A}(C_n) = \ker(A(C_n) \xrightarrow{\text{Res}_{C_n}} \mathbb{Z}) \]

\[H^1_{C_n}(S^{\rho_n}) \cong 0 \]
\[H^*_C(S^{\rho_n}; A) \]

\[A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1}-1} A \otimes C_n \]

Evaluate at \(C_n/C_n \):

\[A(C_n) \xrightarrow{\text{Res}^C_{C_n}} \mathbb{Z} \rightarrow \mathbb{Z} \]

\[H^0_C(S^{\rho_n}) \cong \tilde{A}(C_n) = \ker(A(C_n) \xrightarrow{\text{Res}^C_{C_n}} \mathbb{Z}) \]

\[H^1_C(S^{\rho_n}) \cong 0 \]

\[H^2_C(S^{\rho_n}) \cong \mathbb{Z}. \]
Assembling the computation

Once we know $C_\ast(S^V)$ and $C_\ast(S^W)$ have
Assembling the computation

Once we know $C_*(S^V)$ and $C_*(S^W)$ have

$$H_*(S^V + W) \cong H_*(C_*(S^W) \otimes C_*(S^V))$$
Assembling the computation

- Once we know $C_*(S^V)$ and $C_*(S^W)$ have

$$H_*(S^{V+W}) \cong H_*(C_*(S^W) \otimes C_*(S^V))$$

- Can filter bicomplex in two ways to get two spectral sequences.
Assembling the computation

- Once we know $C_*(S^V)$ and $C_*(S^W)$ have

 $$H_*(S^{V+W}) \cong H_*(C_*(S^W) \otimes C_*(S^V))$$

- Can filter bicomplex in two ways to get two spectral sequences.
- Alternatively these are AHSS’s with coefficients in
Assembling the computation

- Once we know $C_\ast(S^V)$ and $C_\ast(S^W)$ have

$$H_\ast(S^{V+W}) \cong H_\ast(C_\ast(S^W) \otimes C_\ast(S^V))$$

- Can filter bicomplex in two ways to get two spectral sequences.
- Alternatively these are AHSS’s with coefficients in

$$E_{s,t}^2 = H_s(S^V; H_t(S^W)) \implies H_{s+t}(S^{V+W}),$$
Assembling the computation

Once we know $C_\ast(S^V)$ and $C_\ast(S^W)$ have

$$H_\ast(S^{V+W}) \cong H_\ast(C_\ast(S^W) \otimes C_\ast(S^V))$$

Can filter bicomplex in two ways to get two spectral sequences.

Alternatively these are AHSS’s with coefficients in

$$E^2_{s,t} = H_s(S^V; H_t(S^W)) \Rightarrow H_{s+t}(S^{V+W}),$$

$$E^2_{s,t} = H_s(S^W; H_t(S^V)) \Rightarrow H_{s+t}(S^{V+W}).$$
Tricks for computation

1. (Reverse induction) If V is the pullback of a representation of G/H, then can pullback complex.
Tricks for computation

1. (Reverse induction) If V is the pullback of a representation of G/H, then can pullback complex.

2. (Reciprocity) Use the formula

$$S^W \wedge \text{Ind}_H^G S^i \cong \text{Ind}_H^G \left(\text{Res}_H^G (S^W) \wedge S^i \right)$$

...to simplify E_1.
Tricks for computation

1 (Reverse induction) If V is the pullback of a representation of G/H, then can pullback complex.

2 (Reciprocity) Use the formula

$$S^W \wedge \text{Ind}^G_H S^i \cong \text{Ind}^G_H \left(\text{Res}^G_H (S^W) \wedge S^i \right)$$

to simplify E_1.

3 (Functoriality) Use subgroup functoriality to determine the differentials and multiplicative relations.
Tricks for computation

1. (Reverse induction) If V is the pullback of a representation of G/H, then can pullback complex.

2. (Reciprocity) Use the formula

$$S^W \wedge \text{Ind}_H^G S^i \cong \text{Ind}_H^G \left(\text{Res}_H^G (S^W) \wedge S^i \right)$$

3. Use subgroup functoriality to determine the differentials and multiplicative relations.

4. (Competing computations) Decompose the representation in different ways.
$H_*^{C_n}(S^{2\rho_n})$

$M \xleftarrow{\epsilon} M \otimes C_n \xrightarrow{g^{-1}} M \otimes C_n$
\[H^C_n(S^{2\rho_n}) \]

\[
M \overset{\epsilon}{\leftarrow} M \otimes C_n \overset{g^{-1}}{\rightarrow} M \otimes C_n
\]

Evaluate at \(C_n/C_n \) with \(M = H_*(S^{\rho_n}) \):
\[M \xleftarrow{\epsilon} M \otimes C_n \xrightarrow{g^{-1}} M \otimes C_n \]

Evaluate at \(C_n/C_n \) with \(M = H_\ast(S^{\rho_n}) \):

- \(H^C_\ast(S^{\rho_n}) \)
- \(H^e_\ast(S^2) \)
- \(H^e_\ast(S^2) \)
$H^C_{n}(S^{2\rho_n})$

\[M \xleftarrow{\epsilon} M \otimes C_n \xrightarrow{g^{-1}} M \otimes C_n \]

Evaluate at C_n/C_n with $M = H_*(S^{\rho_n})$:

\[H^C_{n}(S^{\rho_n}) \xleftarrow{\text{Ind}_{C_n}^{C_n}} H^e_*(S^2) \xrightarrow{0} H^e_*(S^2) \]
$H_{\star}^C(S^{2\rho_n})$

\[
M \xleftarrow{\varepsilon} M \otimes C_n \xrightarrow{g^{-1}} M \otimes C_n
\]

Evaluate at C_n/C_n with $M = H_{\star}(S^{\rho_n})$:

\[
H_{\star}^C(S^{\rho_n}) \xleftarrow{\text{Ind}_{e}^{C_n}} H_{\star}^e(S^2) \xrightarrow{0} H_{\star}^e(S^2)
\]

\[
H_{0}^C(S^{2\rho_n}) \cong A(C_n)/[C_n]
\]
\[H^C_{\ast}(S^{2\rho_n}) \]

\[M \xleftarrow{\epsilon} M \otimes C_n \xrightarrow{g^{-1}} M \otimes C_n \]

Evaluate at \(C_n/C_n \) with \(M = H_{\ast}(S^{\rho_n}) \):

\[H^C_{\ast}(S^{\rho_n}) \xleftarrow{\text{Ind}_{C_n}^e} H^e_{\ast}(S^2) \xrightarrow{0} H^e_{\ast}(S^2) \]

\[H^C_{0}(S^{2\rho_n}) \cong A(C_n)/[C_n] \]
\[H^C_{\text{odd}}(S^{2\rho_n}) \cong 0 \]
\[\pi_* HA \]

\[H^C_n(S^{2\rho_n}) \]

\[M \xleftrightarrow{\varepsilon} M \otimes C_n \xleftrightarrow{g^{-1}} M \otimes C_n \]

Evaluate at \(C_n/C_n \) with \(M = H_*(S^{\rho_n}) \):

\[H^C_n(S^{\rho_n}) \xleftrightarrow{\text{Ind}_e^{C_n}} H^e_*(S^2) \xleftrightarrow{0} H^e_*(S^2) \]

\[H^C_n(S^{2\rho_n}) \cong A(C_n)/[C_n] \]

\[H^C_n(S^{2\rho_n}) \cong 0 \]

\[H^C_n(S^{2\rho_n}) \cong \mathbb{Z}/(n) \]
\[H_{\ast}^{C_n}(S^{2\rho_n}) \]

\[M \leftrightarrow M \otimes C_n \xrightarrow{g^{-1}} M \otimes C_n \]

Evaluate at \(C_n/C_n \) with \(M = H_{\ast}(S^{\rho_n}) \):

\[H_{\ast}^{C_n}(S^{\rho_n}) \xrightarrow{\text{Ind}_{e}^{C_n}} H^{e}(S^{2}) \xleftarrow{0} H^{e}(S^{2}) \]

\[H_{0}^{C_n}(S^{2\rho_n}) \cong A(C_n)/[C_n] \]

\[H_{\text{odd}}^{C_n}(S^{2\rho_n}) \cong 0 \]

\[H_{2}^{C_n}(S^{2\rho_n}) \cong \mathbb{Z}/(n) \]

\[H_{4}^{C_n}(S^{2\rho_n}) \cong \mathbb{Z} \]
One can compute these groups inductively and get a regular pattern.
One can compute these groups inductively and get a regular pattern.

$H_0^{C_n}(S^{m \rho_n}; A) \cong A(C_n)/([C_n])$.

$H_{odd}^{C_n}(S^{m \rho_n}) \cong 0$.

Can also compute directly from a single chain complex.
One can compute these groups inductively and get a regular pattern.

- $H^C_n(S^m \rho_n; A) \cong A(C_n)/[C_n]$.
- $H^C_{2i}(S^m \rho_n) \cong \mathbb{Z}/(n)$.
- $H^C_{2m}(S^m \rho_n) \cong \mathbb{Z}$.
- Can also compute directly from a single chain complex.
One can compute these groups inductively and get a regular pattern.

* $H^C_{0}((S^{m\rho_n}) \cong A(C_n)/[C_n])$.

* $H^C_{\text{odd}}((S^{m\rho_n}) \cong 0$.

* For $0 < i < m$, $H^C_{2i}(S^{m\rho_n}) \cong \mathbb{Z}/(n)$.
One can compute these groups inductively and get a regular pattern.

- $H^C_n((S^m \rho_n) \equiv A(C_n)/[C_n])$.
- $H^C_{n \text{odd}}((S^m \rho_n) \equiv 0$.
- For $0 < i < m$, $H^C_{2i}(S^m \rho_n) \equiv \mathbb{Z}/(n)$.
- $H^C_{2m}(S^m \rho_n) \equiv \mathbb{Z}$.
One can compute these groups inductively and get a regular pattern.

- $H^C_n((S^m\rho_n) \cong A(C_n)/([C_n])$.
- $H^C_n((S^m\rho_n) \cong 0$.
- For $0 < i < m$, $H^C_{2i}(S^m\rho_n) \cong \mathbb{Z}/(n)$.
- $H^C_{2m}(S^m\rho_n) \cong \mathbb{Z}$.

Can also compute directly from a single chain complex.
Päuschen
There are also external products

\[H^G_*(S^V) \otimes H^G_*(S^W) \to H^G_*(S^{V+W}). \]
There are also external products

\[H^G_*(S^V) \otimes H^G_*(S^W) \to H^G_*(S^{V+W}). \]

These relate the (co)homology groups of different representation spheres.
Multiplicative relations

- There are also external products
 \[H^G_*(S^V) \otimes H^G_*(S^W) \to H^G_*(S^{V+W}). \]

- These relate the (co)homology groups of different representation spheres.

- Can deduce from spectral sequence and Green functor relations.
Some Relations

\[i_*(1) = a_V \in H_0^G(S^V) \text{ induced by inclusion of } S^0 \to S^V. \]
Some Relations

- \(i_*(1) = a_V \in H_0^G(S^V) \) induced by inclusion of \(S^0 \to S^V \).
- \(V \) orientable, \(u_V \in H_{|V|}^G(S^V) \) (generates top class).
Some Relations

- $i_{\ast}(1) = a_V \in H_0^G(S^V)$ induced by inclusion of $S^0 \to S^V$.
- V orientable, $u_V \in H_{|V|}^G(S^V)$ (generates top class).
- V orientable, $v_V \in H_G^{|V|}(S^V)$ (generates top class).
Some Relations

- $i_*(1) = a_V \in H^G_0(S^V)$ induced by inclusion of $S^0 \to S^V$.
- V orientable, $u_V \in H^G_{|V|}(S^V)$ (generates top class).
- V orientable, $v_V \in H^G_{|V|}(S^V)$ (generates top class).
- $a_V a_W = a_{V + W}$.
Some Relations

- \(i_*(1) = a_V \in H_0^G(S^V) \) induced by inclusion of \(S^0 \to S^V \).
- \(V \) orientable, \(u_V \in H_{|V|}^G(S^V) \) (generates top class).
- \(V \) orientable, \(v_V \in H_{G}^{|V|}(S^V) \) (generates top class).
- \(a_V a_W = a_{V+W} \).
- \(u_V u_W = u_{V+W} \).
Some Relations

- \(i_*(1) = a_V \in H^G_0(S^V) \) induced by inclusion of \(S^0 \to S^V \).
- \(V \) orientable, \(u_V \in H^G_{|V|}(S^V) \) (generates top class).
- \(V \) orientable, \(v_V \in H^G_{|V|}(S^V) \) (generates top class).
- \(a_V a_W = a_{V+W} \).
- \(u_V u_W = u_{V+W} \).
- \(v_{\rho_n} u_{\rho_n} = [C_n] \)
Some Relations

- $i_*(1) = a_V \in H^G_0(S^V)$ induced by inclusion of $S^0 \to S^V$.
- V orientable, $u_V \in H^G_{|V|}(S^V)$ (generates top class).
- V orientable, $v_V \in H^G_{|V|}(S^V)$ (generates top class).
- $a_V a_W = a_{V+W}$.
- $u_V u_W = u_{V+W}$.
- $v_{\rho_n} u_{\rho_n} = [C_n]$.
- $v_{\rho_n} v_{\rho_n} = [C_n]v_{2\rho_n}$.
Computations for $G = C_2, \ M = \mathbb{Z}$
Computations for $G = C_2$, $M = \mathbb{Z}$
Computations for $G = C_2$, $M = \mathbb{Z}$
Computations for $G = C_2 \ M = \mathbb{Z}$
Brace yourselves
\[H^C_{\ast} (S^{\rho_5 - \rho_5 \otimes_k}; A) \]

\[C_{\ast}(S^{\rho_5}) \otimes A \]

\[
\begin{array}{c c c c}
0 & 1 & 2 \\
\end{array}
\]

\[A \xleftarrow{\epsilon} A \otimes C_5 \xleftarrow{g^{-1}} A \otimes C_5 \]
\[H^C_5(S^{\rho_5 - \rho_5 \otimes k}; A) \]

\[C^*(S^{\rho_5}) \otimes A \cong C_{-\ast}(S^{-\rho_5}) \otimes A \]

\[
\begin{array}{ccc}
0 & & \\
0 & A & \\
& \Delta & \\
-1 & A \otimes C_5 & \\
& g^k - 1 & \\
-2 & A \otimes C_5 & \\
\end{array}
\]
\(H_{*}^{C_5}(S^{\rho_5 - \rho_5 \otimes k}; A) \)

\[
\begin{array}{ccc}
0 & 1 & 2 \\
0 & A & A \otimes C_5 & A \otimes C_5 \\
1 & A \otimes C_5 & A \otimes C_5 \otimes C_5 & A \otimes C_5 \otimes C_5 \\
2 & A \otimes C_5 & A \otimes C_5 \otimes C_5 & A \otimes C_5 \otimes C_5 \\
\end{array}
\]

Diagonal gives total degree.
$H^C_5(\mathcal{S}^{\rho_5 - \rho_5^k}; A)$

Diagonal gives total degree.
$H^C_{\ast}(S^{\rho_5-\rho^\otimes_k_5};A)$

Compute cohomological (↓) direction first.
Compute cohomological (\(\downarrow\)) direction first.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\tilde{A}(C_5))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(-1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(-2)</td>
<td>(\mathbb{Z})</td>
<td>(\mathbb{Z})</td>
<td>(\mathbb{Z})</td>
</tr>
</tbody>
</table>
Compute cohomological (\(\downarrow\)) direction first.

\[
\begin{array}{ccc}
0 & 1 & 2 \\
0 & \tilde{A}(C_5) & 0 & 0 \\
-1 & 0 & 0 & 0 \\
-2 & \mathbb{Z} & ? & \mathbb{Z} & ? & \mathbb{Z}
\end{array}
\]
Compute homological (←) direction first.
\[\pi_* \mathcal{H} A \]

\[H^C_{C^5}(S^{\rho_5 - \rho_5^k}; A) \]

Compute homological (←) direction first.

\[
\begin{array}{ccc}
0 & 1 & 2 \\
0 & A(C_5)/[C_5] & 0 & \mathbb{Z} \\
-1 & 0 & 0 & \mathbb{Z} \\
-2 & 0 & 0 & \mathbb{Z}
\end{array}
\]
Compute homological (←) direction first.

\[
\begin{array}{ccc}
0 & 1 & 2 \\
0 & A(C_5)/[C_5] & 0 & \mathbb{Z} \\
-1 & 0 & 0 & \mathbb{Z} \\
-2 & 0 & 0 & \mathbb{Z}
\end{array}
\]
Resolve differentials for first spectral sequence.

\[
\begin{array}{ccc}
0 & 1 & 2 \\
0 & A(C_5)/[C_5] & 0 \\
-1 & 0 & 0 \\
-2 & 0 & 0 \\
\end{array}
\]

\[\mathbb{Z}\]

\[\mathbb{Z}\]

\[\mathbb{Z}\]

\[\mathbb{Z}\]
Resolve differentials for second spectral sequence.
Resolve differentials for second spectral sequence.

\[
\begin{array}{ccc}
0 & 1 & 2 \\
0 & \tilde{A}(C_5) & 0 & 0 \\
-1 & 0 & 0 & 0 \\
-2 & Z & Z & Z \\
\end{array}
\]

\[
\begin{array}{ccc}
& 1 \\
Z & \leftarrow & Z \\
& 0 \\
\end{array}
\]
Resolve differentials for second spectral sequence.

\[\begin{array}{ccc}
0 & 1 & 2 \\
0 & \tilde{A}(C_5) & 0 & 0 \\
-1 & 0 & 0 & 0 \\
-2 & 0 & 0 & \mathbb{Z}
\end{array} \]
Resolve differentials for second spectral sequence.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ā((C_5))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>−1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>−2</td>
<td>0</td>
<td>0</td>
<td>(\mathbb{Z})</td>
</tr>
</tbody>
</table>

We have an extension:

\[
0 \rightarrow \tilde{A}(C_5) \rightarrow H_0^{C_5}(S^{\rho_5 - \rho_5^{\otimes k}}; A) \rightarrow \mathbb{Z} \rightarrow 0
\]
Our extension problem:

$$0 \to \tilde{A}(C_5) \to H^C_{\ast}(S^5 - \rho_5^k ; A) \to \mathbb{Z} \to 0$$
Our extension problem:

\[0 \to \tilde{A}(C_5) \to H^C_0(S^{\rho_5 - \rho_5^k}) \to \mathbb{Z} \to 0 \]

Extension splits additively, but not as \(A(C_5) \) modules.
Our extension problem:

\[0 \to \tilde{A}(C_5) \to H^C_{0}(S^{\rho_5 - \rho_5^k}) \to \mathbb{Z} \to 0 \]

- Extension splits additively, but not as \(A(C_5) \) modules.
- Use bicomplex to solve extension.
\(H^C_5(S^0, \rho^5_5 \otimes_k S^0) \)

- Our extension problem:

\[
0 \rightarrow \tilde{A}(C_5) \rightarrow H^C_5(S^0 - \rho^5_5 \otimes_k S^0) \rightarrow \mathbb{Z} \rightarrow 0
\]

- Extension splits additively, but not as \(A(C_5)\) modules.
- Use bicomplex to solve extension.
- If \(k = \pm 1 \mod 5\) get \(A(C_5) = H^C_5(S^0)\).
Our extension problem:

\[0 \to \tilde{A}(C_5) \to H^C_{C_5}(S^{\rho_5 - \rho^\otimes_k}) \to \mathbb{Z} \to 0 \]

- Extension splits additively, but not as \(A(C_5) \) modules.
- Use bicomplex to solve extension.
- If \(k = \pm 1 \mod 5 \) get \(A(C_5) = H^C_0(S^0) \).
- If \(k = \pm 2 \mod 5 \) get a projective \(A(C_5) \) module of rank one.
We can also determine explicit models for the irreducible real representations of C_n, D_n, A_4, and S_4.
Summary

- We can also determine explicit models for the irreducible real representations of C_n, D_n, A_4, and S_4.
- We can compute the homology and cohomology of these representation spheres.
Summary

- We can also determine explicit models for the irreducible real representations of C_n, D_n, A_4, and S_4.
- We can compute the homology and cohomology of these representation spheres.
- Calculating $H^*_G(S^V+W)$ is generally difficult due to complications in the spectral sequence.
We can also determine explicit models for the irreducible real representations of C_n, D_n, A_4, and S_4.

We can compute the homology and cohomology of these representation spheres.

Calculating $H^G_\ast(S^V+W)$ is generally difficult due to complications in the spectral sequence.

There is still plenty of other computations left to do.
Twisted tetrahedral representation of Σ_4
Twisted tetrahedral representation of Σ_4
Twisted tetrahedral representation of Σ_4