On a nilpotence conjecture of J.P. May

Justin Noel joint with Akhil Mathew and Niko Naumann

University of Regensburg

June 29, 2014

Justin Noel joint with Akhil Mathew and Niko Naumann

May's conjecture

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_∞ -ring spectrum, and

 $x \in \ker(\pi_* R \to H_*(R;\mathbb{Z})).$

Then x is nilpotent., i.e., $x^n = 0$ for $n \gg 0$.

• When $R = S \implies$ Nishida's nilpotence theorem.

• In contrast to the nilpotence theorem (Devinatz-Hopkins-Smith): We do not need to know about MU_*R , but now require R to be H_{∞} .

E_{∞}/H_{∞} -rings

• An E_{∞} -ring spectrum R has extended power maps:

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

- The $\{\mu_n\}_{n\geq 0}$ are required to fit into some commutating diagrams.
- All of these diagrams are in Spectra.
- Analogous definition in ho(Spectra) yields H_{∞} -ring spectra.
- Obtain forgetful functor:

$$U: ho(E_{\infty} - \text{Spectra}) \rightarrow H_{\infty} - \text{Spectra}.$$

•
$$R$$
 is $E_{\infty} \simeq \text{comm. } S$ -algebra $\Longrightarrow R$ is H_{∞} .

Examples of E_{∞}/H_{∞} -rings

Let X be a simply connected space of finite type.

k	Spaces		$H_{\infty}\mathrm{Mod}_{Hk} \subset k_* \mathrm{v.s.}$
Q	4	$H\mathbb{Q}^X \simeq C^*(X;\mathbb{Q})$	$H^*(X;\mathbb{Q})$
$\overline{\mathbb{F}}_p$	X_p	$H\overline{\mathbb{F}}_p^X \simeq C^*(X;\overline{\mathbb{F}}_p)$	$H^*(X;\overline{\mathbb{F}}_p)$

- Sullivan theory says we can recover $X_{\mathbb{Q}}$ from the E_{∞} algebra $H\mathbb{Q}^X$.
- Only get $H^*(X; \mathbb{Q}) \in \mathbb{Q}$ -CAlg.
- Mandell's theory says we can recover X_p from the $E_\infty\text{-algebra}$ $H\overline{\mathbb{F}}_p^X$.
- Only get $H^*(X; \overline{\mathbb{F}}_p)$ as an unstable algebra over Steenrod algebra.

Main result

Theorem (Mathew-Naumann-N.)

Suppose that R is an H_{∞} -ring spectrum. Suppose that $x \in \pi_*R$ has nilpotent image in $H_*(R;\mathbb{Q})$ and $H_*(R;\mathbb{F}_p)$ for \forall primes p. Then x is nilpotent.

Corollary

May's conjecture: Suppose that R is an H_∞ -ring spectrum and

 $x \in \ker(\pi_* R \to H_*(R;\mathbb{Z})).$

Then x is nilpotent.

Proof reduction

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

 $\bigcirc H_*(R;\mathbb{Q})$

- ② $H_*(R; \mathbb{F}_p)$ for ∀ primes p
- **③** and $K(n)_*(R)$ for \forall primes p and n > 0.

Then x is nilpotent.

Theorem (Mathew-Naumann-N.)

If R is H_{∞} then condition (1) imply condition (3) and therefore (1) and (2) imply the main theorem.

Proof of thm

- Since x has nilpotent image H_{*}(R; Q) ≅ π_{*}R ⊗ Q, ∃m s.t. x^m is torsion.
- $y := x^m$ is nilpotent $\iff x$ is nilpotent.
- WTS that our torsion y has nilpotent image in $K(n)_*R$.
- Hurewicz map factors

$$\pi_*R \to \pi_*L_{K(n)}(E_n \wedge R) \to K(n)_*(R).$$

• $\operatorname{Im}(y) \in \pi_* L_{K(n)}(E_n \wedge R)$ is nilpotent $\implies \operatorname{Im}(y) \in K(n)_*(R)$ is nilpotent \implies the main theorem.

Proof of thm II

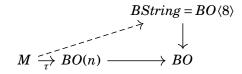
- $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.
- Assume $y \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^m -torsion.
- We then show that $y^{p+1} \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^{m-1} -torsion.
- So $y^{(p+1)^m} = 0 \in \pi_* L_{K(n)}(E_n \wedge R)$ and the theorem follows.
- Argument uses analogues of ψ/θ -operations and the formula:

$$y^p = \psi(y) + p\theta(y).$$

• This depends on work of Rezk and Strickland.

String manifolds

Recall that a String structure on a smooth manifold M is



- Similar definitions for Spin-manifolds, SO-manifolds, ...
- $\rightsquigarrow E_{\infty}$ Thom spectra $MString, MSO, \ldots$
- $\pi_*MString \cong \Omega^*_{String}, \pi_*MSpin \cong \Omega^*_{Spin} \dots$
- Forgetful maps:

$$MString \rightarrow MSpin \rightarrow MSO \rightarrow MO$$

String bordism

Theorem (Mathew-Naumann-N.)

For a String manifold M. The following are equivalent:

- For $n \gg 0$, $M^{\times n}$ bounds a String manifold.
- 2 M bounds an oriented manifold.
- **3** The Stiefel-Whitney and Pontryagin numbers of M vanish.
 - (2) \iff (3) is classical.
 - Claim is equivalent to

Nil($\pi_*MString$) = ker($\pi_*MString \rightarrow \pi_*MSO$).

• We will show these are both are equal to

$$\ker(\pi_*MString \rightarrow H_*(MString;\mathbb{Z})).$$

$Nil(\pi_*MString)$

• May's conjecture \implies

```
\ker(\pi_*MString \to H_*(MString;\mathbb{Z})) \subseteq \operatorname{Nil}(\pi_*MString).
```

Always have

```
\operatorname{Im}(\operatorname{Nil}(\pi_*MString)) \subseteq \operatorname{Nil}(H_*(MString;\mathbb{Z})).
```

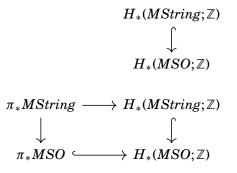
• We will show

 $\operatorname{Nil}(H_*(MString;\mathbb{Z})) \subseteq \operatorname{Nil}(H_*(MSO;\mathbb{Z})) = 0.$

 $\implies \ker(\pi_*MString \rightarrow H_*(MString;\mathbb{Z})) = \operatorname{Nil}(\pi_*MString).$

$H_*(MString;\mathbb{Z})$

We will show:



 $\implies \ker(\pi_*MString \to \pi_*MSO) = \ker(\pi_*MString \to H_*(MString;\mathbb{Z})).$

So want to analyze $H_*(MString;\mathbb{Z})$.

Thom isomorphisms

- Have multiplicative isos $H_*(MG;k) \cong H_*(BG;k)$ for G = SO, Spin, String.
- So we need to analyze $H_*(BG;\mathbb{Z})$ and show it is reduced (no nilpotents).
- $H_*(BG;\mathbb{Z})$ is fin. gen. in each degree.
- ullet \Longrightarrow We can assemble this computation from

 $H_*(BG;\mathbb{Z}[1/2])$ and $H_*(BG;\mathbb{Z}_2)$

$H_*(BString; \mathbb{Z}[1/2])$

 $\bullet \ \, {\sf Serre} \ \, {\sf SS} \ \Longrightarrow \ \,$

 $H_*(BString; \mathbb{Q}) \hookrightarrow H_*(BSpin; \mathbb{Q})$

 $H_*(BString; \mathbb{Q}) \longrightarrow H_*(BSpin; \mathbb{Q}) \longrightarrow H_*(BSO; \mathbb{Q})$ Moreover these are all polynomial algebras, so they are reduced

Have retraction

$$KO[1/2] \xrightarrow{\otimes \mathbb{C}} KU[1/2] \xrightarrow{U} KO[1/2].$$

• \implies a retraction

 $H_*(BO\langle k\rangle;\mathbb{Z}[1/2]) \to H_*(BU\langle k\rangle;\mathbb{Z}[1/2]) \to H_*(BO\langle k\rangle;\mathbb{Z}[1/2]).$

• Work of Hovey-Ravenel \implies for $k \le 8$, $H_*(BU\langle k \rangle; \mathbb{Z}[1/2])$ is torsion free

$H_*(\overline{BString};\mathbb{Z}_2)$

• Stong's calculations \implies

Stong's calculations \implies

$$H_*(BO;\mathbb{F}_2) \longleftrightarrow H_*(BSO;\mathbb{F}_2)$$
 $H_*(BSpin;\mathbb{F}_2)$
 \downarrow
 $H_*(BO;\mathbb{F}_2) \longleftrightarrow H_*(BSO;\mathbb{F}_2)$

$H_*(BString;\mathbb{Z})$

Proposition

$H_*(BString;\mathbb{Z}), H_*(BSpin;\mathbb{Z}), H_*(BSO;\mathbb{Z})$ have only simple 2-torsion.

$H_*(BSO;\mathbb{Z}) \longleftrightarrow H_*(BSO;\mathbb{F}_2) \times H_*(BSO;\mathbb{Q})$

$$H_*(BSpin;\mathbb{Z}) \longrightarrow H_*(BSpin;\mathbb{F}_2) \times H_*(BSpin;\mathbb{Q})$$

Justin Noel joint with Akhil Mathew and Niko Naumann

$\pi_*MString$

Lemma (Mathew-Naumann-N.)

To summarize there is a commutative diagram:

Theorem (Mathew-Naumann-N.)

This implies

$$\begin{aligned} \ker(\pi_*MString \to \pi_*MSO) &= \ker(\pi_*MString \to H_*(MString;\mathbb{Z})) \\ &= \operatorname{Nil}(\pi_*MString). \end{aligned}$$

and the result follows.

Justin Noel joint with Akhil Mathew and Niko Naumann

Further applications

- Have similar nilpotence results for Spin-manifolds, $U\langle 6 \rangle$ -manifolds, and SU-manifolds.
- Can deduce differentials in the Adams SS for connective E_{∞} -ring spectra.
- Can show ring spectra such as $BP/(p^3v_n^2), ku/(30\beta^5)$, and tmf/4 do not admit E_∞ ring structures.
- Can show 'half' of Quillen's *F*-isomorphism theorem for Lubin-Tate theories.
- We have since generalized this, with an independent argument, to general complex oriented cohomology theories for finite *p*-groups.

Thank you for your attention!

Justin Noel joint with Akhil Mathew and Niko Naumann

UniRegensburg