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Two projects and why you should care

Equivariant (co)homology of representation spheres.

First computations for non-abelian groups.
π?HZ
Fun!

Moduli spaces of maps of algebras.

Construct a computational framework for standard questions.
Reprove many classic results.
Construct new counterexamples.
Surprise connection to rational homotopy theory.
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Representation spheres

Let G be a finite group.

Take an orthogonal G representation V =Rn	G.
Here is a picture of the unit disc of the standard representation
of C5.
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G-CW structure

To construct SV , collapse the boundary of the unit disc in V
to a point.

 

Construct a CW-decomposition on SV , such that G takes cells
to cells while never mapping a cell in a non-trivial way to itself.
For example, the color slices above.
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Cellular homology

Given a CW-complex X let

Ci(X ) :=Z{i-cells of X }

C̃0(X ) := ker(C0(X )→ C0(∗))

H∗(X )∼=
[
· · ·Ci+1(X ) ∂−→ Ci(X ) ∂−→ Ci−1(X ) · · · ∂−→ C̃0(X )

]
H∗(X ) is calculated by taking the linear dual of this complex
and then taking cohomology.
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Bredon homology

Given a G-CW-complex X let

Ci(X ) :=Z{i-cells of X }	G.

For a subgroup K ÉG, let CK
i (X )⊂ Ci(X ) be the subgroup of

K-invariant chains.
HK∗ (X )∼=

[
· · ·CK

i+1(X ) ∂−→ CK
i (X ) ∂−→ CK

i−1(X ) · · · ∂−→ C̃K
0 (X )

]
When K is the trivial subgroup: HK∗ (X )∼= H∗(X ).
For cohomology first take the invariants on the cochains.
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Method of computation

Fix a finite group G and determine explicit models for all of
the irreducible real representations of G.

Construct an explicit G-CW decomposition on each irreducible
representation sphere.
Compute HG∗ (SV ) and H∗

G(SV ).

Assemble the computations to compute HG∗ (SV⊕W ).

Justin Noel UniBonn, MPIM



π?HZ π∗Map(X ,Y )

Method of computation

Fix a finite group G and determine explicit models for all of
the irreducible real representations of G.
Construct an explicit G-CW decomposition on each irreducible
representation sphere.

Compute HG∗ (SV ) and H∗
G(SV ).

Assemble the computations to compute HG∗ (SV⊕W ).

Justin Noel UniBonn, MPIM



π?HZ π∗Map(X ,Y )

Method of computation

Fix a finite group G and determine explicit models for all of
the irreducible real representations of G.
Construct an explicit G-CW decomposition on each irreducible
representation sphere.
Compute HG∗ (SV ) and H∗

G(SV ).

Assemble the computations to compute HG∗ (SV⊕W ).

Justin Noel UniBonn, MPIM



π?HZ π∗Map(X ,Y )

Method of computation

Fix a finite group G and determine explicit models for all of
the irreducible real representations of G.
Construct an explicit G-CW decomposition on each irreducible
representation sphere.
Compute HG∗ (SV ) and H∗

G(SV ).

Assemble the computations to compute HG∗ (SV⊕W ).

Justin Noel UniBonn, MPIM



π?HZ π∗Map(X ,Y )

Twisted tetrahedral representation of Σ4
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Assembling the computation

Our main tool for computing the (co)homology of reducible
representations involves an equivariant Atiyah-Hirzebruch
spectral sequence.

The functor
X 7→ HG

∗ (SW ∧ X )

is our generalized equivariant homology theory.

E1
∗,∗ = ‘H∗(SW )⊗C∗X ’ =⇒ HG

∗ (SW ∧ X ).
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Tricks for computation

1 (Reverse induction) If V is the pullback of a representation of
G/H, then use previous computation.

2 (Reciprocity) Use the formula

SW ∧ IndG
HS i ∼= IndG

H

(
ResG

H(SW )∧S i
)

to simplify E1.
3 (Functoriality) Use subgroup functoriality to determine the

differentials.
4 (Competing computations) Decompose the representation in

different ways.
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Computations for G = C2
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Summary

We can also determine explicit models for the irreducible real
representations of Cn, Dn, A4, and S4.

We can compute the homology and cohomology of these
representation spheres.
Calculating HG∗ (SV⊕W ) is generally difficult due to
complications in the spectral sequence.
There is still plenty of other computations left to do.

Justin Noel UniBonn, MPIM
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Spaces of maps

Goal
Construct tools for determining π∗CT (X ,Y ).

C is some category where there is a space of maps between
two objects.
CT will be some subcategory whose objects have some
additional structure and maps preserve this structure.

To clarify we will consider two examples;
one topological, one algebraic.
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First examples

Consider the functor X 7→ΩX :=Top∗(S1, X ).

Question
Given a map f ∈Top∗(ΩX ,ΩY ) is f ∼Ωg?

Suppose A∗ and B∗ are CDGA’s over k (char k = 0).

Question

Given a map f ∈DG–Mod (A∗,B∗) is f ∼ g where g is a map of
CDGA’s?

Justin Noel UniBonn, MPIM
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First obstructions (Loop spaces)

Regard ΩX as a monoid by concatenating loops.

A loop map will always commute with this product structure.
In particular, the following diagram will commute in the
homotopy category of based spaces:

ΩX ×ΩX

��

f× f // ΩY ×ΩY

��
ΩX

f // ΩY

Such a map is called an H-map.

Justin Noel UniBonn, MPIM
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First obstructions (Loop spaces)

We have the following diagram of forgetful functors:

hΩ–Top (ΩX ,ΩY ) // hTop∗(ΩX ,ΩY )

H–Sp (ΩX ,ΩY )
� _

��
hΩ–Top (ΩX ,ΩY ) //

55llllllllllllll
hTop∗(ΩX ,ΩY )

The first obstruction to lifting f to a loop map is to see if it
lifts to an H-map.

Question

Are there other obstructions to lifting f to a loop map?Or does this
suffice?

Justin Noel UniBonn, MPIM
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What are the corresponding notions in the world of CDGAs?

Note hDG–Mod (A∗,B∗)∼=Mod k(H∗A,H∗B).
The homology of a CDGA is always a graded commutative
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The H-map analogue is a map f ∈ k-Alg (H∗A,H∗B).
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π?HZ π∗Map(X ,Y )

Homotopical shadows

These questions concern whether a map between two objects
with structure can be lifted to a map preserving this structure.

In these cases this structure has some shadow in the homotopy
category:
Loop space  H-space (monoid in hTop∗).

CDGA  commutative k-algebra structure in homology.
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Spaces of loop maps

Problem in terms of spaces of maps
Compute

hΩ–Top (ΩX ,ΩY )∼=π0Ω–Top (ΩX ,ΩY )

and the forgetful maps

H–Sp (ΩX ,ΩY )
� _

��
π0Ω–Top (ΩX ,ΩY ) //

55kkkkkkkkkkkkkk
π0Top∗(ΩX ,ΩY )

Is the forgetful functor full or faithful here?
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Monads

Loop spaces are spaces with additional structure.

CDGAs are chain complexes with additional structure.
Both of these structures are examples of T-algebra structures
for some monad T.
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π?HZ π∗Map(X ,Y )

Spectral sequence

Theorem (Johnson-Noel)

Under technical hypotheses there is a fringed spectral sequence:

Es,t
1 =⇒ πt−sCT (X ,Y )

such that
1 E0,0

1
∼= hC (X ,Y )

2 E0,0
2

∼= (hC )T (X ,Y )

(these correspond to H-maps)

3 There are a sequence of obstructions

di( f ) ∈ E i,i−1
1

to lifting f ∈ hC (X ,Y ) to a map of T-algebras.
4

π0C (X ,Y )→ E0,0
2

∼= (hC )T (X ,Y )

,→ E0,0
1

∼= hC (X ,Y )

Justin Noel UniBonn, MPIM
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π?HZ π∗Map(X ,Y )

Applications

This spectral sequence can be applied to the examples above
as well as to a host of other problems.

Most examples come from algebras over operads.
We can now show that the homotopy category of E∞ ring
spectra is not equivalent to the category of H∞ ring spectra.
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π?HZ π∗Map(X ,Y )

Example: Hopf map

Each multiple of the Hopf map S3 → S2 defines a map of
E∞ rings' CDGAs

C∗S2 → C∗S3.

These maps are distinct in π0CDGA(C∗S2,C∗S3).
However each induces the trivial map in

k-Alg (H∗S2,H∗S3)∼= {ε}.

This is the first known set of distinct E∞ maps which induce
the same H∞ map.

Justin Noel UniBonn, MPIM
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Example: Heisenberg manifold

Let M be the Heisenberg 3-manifold: 1 R R

0 1 R

0 0 1

/
 1 Z Z

0 1 Z

0 0 1



There are infinitely many maps in

k-Alg (H∗M,H∗S2)

but π0CDGA(C∗M,C∗S2)∼= {ε}.
This are the first known H∞ maps which do not lift to E∞
maps.

Justin Noel UniBonn, MPIM
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Connection to rational homotopy theory

These examples arise for a good reason:

Theorem (Noel)

Suppose X and Y are spaces of finite type and Y is nilpotent then
the natural map

Top∗(X ,YQ)→ E∞(HQY ,HQX )

is an equivalence.
Moreover this map induces an isomorphism between the classical
Bousfield-Kan spectral sequence computing the left hand side and
the spectral sequence of Johnson-Noel computing the right hand
side.

Justin Noel UniBonn, MPIM
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Final summary

We computed the equivariant homology and cohomology of
some representation spheres.

We derived an obstruction theoretic spectral sequence solving
both old problems and some new ones.
We used this connection to prove a correspondence between
unstable rational homotopy theory and E∞ ring spectra.

Thank You!

Justin Noel UniBonn, MPIM
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