INTRODUCTION TO ∞ -CATEGORIES EXERCISE SHEET 2

- (1) Regard the poset [1] as a discrete simplicially enriched category and equip it with the symmetric monoidal structure $a \star b = \min(a, b)$ with unit 1.
 - (a) Identify the induced Day symmetric monoidal structure \Box on Fun([1], sSet).
 - (b) Explicitly identify the commutative monoids in this symmetric monoidal category.
 - (c) The Day symmetric monoidal structure is closed. Identify the adjoints to the □ product.
 - (d) Fix $\mathcal{D} \subseteq \operatorname{Fun}([1], \operatorname{sSet})$ and $g \in \operatorname{Fun}([1], \operatorname{sSet})$. Let $\mathcal{C} \subseteq \operatorname{Fun}([1], \operatorname{sSet})$ be the class of morphisms f such that $f \Box g$ has the left lifting property with respect to \mathcal{D} . Show that \mathcal{C} is weakly saturated/cofibrantly closed.
 - (e) Take the opposite monoidal structure on [1], i.e., replace max with min above and use 0 as the unit. Identify the induced symmetric monoidal structure on Fun([1], sSet).
- (2) Suppose $i: \mathcal{C} \subseteq \mathcal{D}$ is a fully faithful inclusion of small categories. Let $i^*: P(\mathcal{D}) \to P(\mathcal{C})$ denote the restriction functor with left adjoint $i_!$ and right adjoint i_* . Show that $i_!$ and i_* are fully faithful.
- (3) (a) Show that the class of monomorphisms of simplicial sets is the cofibrant closure/weak saturation of the set of maps $\partial \Delta^n \to \Delta^n$ for all $n \ge 0$. (b) Show that $f \Box g$ is a monomorphism if f and g are.
- (4) (a) Show that an equivalence of (ordinary) categories induces a Joyal categorical equivalence between the nerves. (b) Prove that a map of ∞categories is a Joyal categorical equivalence if and only if it is an isomorphism in the naive homotopy category sSet^h₀.
- (5) (a) Consider the following notion of weak equivalence between simplicial sets: a map $f : X \to Y$ is a *weak equivalence for Kan complexes* if the induced map

$$f^*: [Y, Z]_\mathcal{J} \to [X, Z]_\mathcal{J}$$

is bijective for all Kan complexes Z. Show that this is equivalent to the standard notion of weak equivalence of simplicial sets. (b) Conclude that every Joyal categorical equivalence is a weak equivalence.

- (6) For n > 0 let $I[n] \subseteq \Delta^n$ be the simplicial subset spanned by the edges (i, i + 1) for all $0 \leq i < n$. Show that the inclusion $I[n] \to \Delta^n$ is inner anodyne. Conclude that X is an ∞ -category if and only if $X^{\Delta^n} \to X^{I[n]}$ is a trivial fibration.
- (7) Let $v: C \to D$ be a right anodyne map and $u: A \to B$ a monomorphism. Show that $u \Box v$ is right anodyne using the corresponding result for left anodyne maps.