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CLASSICAL THEOREMS AND CONJECTURES 

ALGEBRAIC K-THEORY

K(�) : Ring � Sp�0
restricts to

K(�) : CRing � CAlg(Sp�0)

Given: 0 � A � B � C � 0 [B] � [C] + [A]

(K is also defined on exact cats, schemes Catex�, and Waldhausen cats)

K0(R) = �0K(R) = Z{Iso(Modf.g.proj(R))}/ �



CLASSICAL THEOREMS AND CONJECTURES 

YOU ARE SUPPOSED TO CARE ABOUT K-THEORY
Pic(R) Br(R)

Grothendieck-Riemann-Roch Theorem:

All connect to K�(R)

CHi(R)



CLASSICAL THEOREMS AND CONJECTURES 

LICHTENBAUM-QUILLEN TYPE CONJECTURES
QUILLEN (1974 ICM)

`One might hope to have a spectral sequence, analogous to 
 the Atiyah-Hirzebruch spectral sequence of topological K-theory:

Es,t
2 = Hs

ét(A; Z�(t/2)) � �t�sK(A)�

converging for t-s>dim(A)+1.’

THM. THOMASON (1985) THOMASON-TROBAUGH (1990)

Suppose A noetherian of finite Krull dimension, � � GL1(A), and...
Then:

�Es,t
2 = Hs

ét(A; Z�(t/2)) � �t�sLK(1)K(A).

K(1) is the mod � Morava K-theory.



CLASSICAL THEOREMS AND CONJECTURES 

LQ-TYPE CONJECTURES CONTINUED

LQ Conjecture remix:

=� LK(n)K(A) = 0, �n � 2.

LK(n)A = 0, �n � 1 and LK(1)K(A) is usually not zero.

K(A)� � LK(1)K(A) has coconnective fiber.

THM. MITCHELL  (1990)

K(�) raises chromatic complexity of discrete rings.=�
Red-shift!



BRAVE NEW RINGS AND THE AUSONI-ROGNES CONJECTURES

BRAVE NEW RINGS
Waldhausen predicted K-theory extends:

K(�) : CRing � CAlg(Sp) � CAlg(Sp�0)

K(�) : Ring � Alg(Sp) � Sp�0

Moreover S(p)
��� holimnLnS

So K-theory of spaces can be studied via the chromatic filtration.

THM. MCCLURE-STAFFELT (1993)
=� K(S(p)) = A(�;p)

��� holimnK(LnS)



BRAVE NEW RINGS AND THE AUSONI-ROGNES CONJECTURES

GALOIS DESCENT
Thomason’s descent result reduces to Galois descent:

K(A) � K(B)hG

Then the induced map:

is an equivalence after K(1)-localization.

THM. THOMASON (1985)

A � B a finite G-Galois extension of fields satisfying ...



BRAVE NEW RINGS AND THE AUSONI-ROGNES CONJECTURES

ROGNES-GALOIS EXTENSIONS
DEFN. ROGNES (2005)

Let A � CAlg(Sp),
B � CAlg(ModA) equipped with a G-action.

Then A � B is a G-Galois extension if:

A ��� BhG

B �A B ���
�
G B

The K(n)-local analogue is a K(n)-local G-Galois extension.



BRAVE NEW RINGS AND THE AUSONI-ROGNES CONJECTURES

AUSONI-ROGNES GALOIS DESCENT CONJECTURE
Let F(n+ 1) be a type (n+ 1)-finite �-local spectrum

with vn+1-element v.

Set T := T(n + 1) = F(n + 1)[v�1].

CONJ. AUSONI-ROGNES (2008)

Note T(n+ 1)-equivalence =� K(n+ 1)-equivalence.



BRAVE NEW RINGS AND THE AUSONI-ROGNES CONJECTURES

AUSONI-ROGNES LQ-TYPE CONJECTURE

CONJ. AUSONI-ROGNES (2008)

Let V = F(n+ 1).

=� T(m)�K(B) = K(m)�K(B) = 0, �m > n+ 1.

K-theory increases the bound on the chromatic complexity.=�



BRAVE NEW RINGS AND THE AUSONI-ROGNES CONJECTURES

EVIDENCE FOR CONJECTURES

and A satisfies Thomason’s conditions,

For the Cp�1-Galois extension Lp � KUp,
the AR-Galois-descent conjecture holds by work of Ausoni-Rognes.

the AR-Galois-descent conjecture holds by Thomason’s theorem.

If A � B is a G-Galois extension of characteristic 0 fields,



BRAVE NEW RINGS AND THE AUSONI-ROGNES CONJECTURES

EVIDENCE FOR CONJECTURES
When B is a field of char 0 satisfying Thomason’s conditions,
then the Rost-Voevodsky proof of the Bloch-Kato conjecture

When p � 5, B � {Lp,KUp, lp, kup},
then, by calculations of Ausoni-Rognes,

the ARLQ-conjecture holds for B.

Levine
=� the LQ=ARLQ-conjecture holds for B.



RESULTS

SOLUTIONS TO THE AR-GALOIS DESCENT CONJECTURE

Any G-Galois extension of fields (no Thomason hypotheses)

KO � KU

Any G-Galois extension of TMF[1n ]

Any G-Galois extension of Tmf0(n)

THM. CLAUSEN-MATHEW-NAUMANN-N (2016)

Then the induced maps:
LTK(A) � LT(K(B)hG) � (LTK(B))hG

are equivalences for any periodic localization LT.
(e.g., LT(n), LK(n), Lf

n, Ln)

EhGn � En, for G � Gn (Meier-Naumann-N)

Let A � B one of the following finite G-Galois extensions:



RESULTS

FURTHER RESULTS ON DESCENT
With A � B and LT as above:

Es,t
2 = Hs(G; �tLTK(B)) � �t�sLTK(A)

There is an N � 2, such that associated HFPSS

collapses at EN with a horizontal vanishing line.

ko � ku
A faithfully flat, finite map, such that ��B is a projective ��A-module.

tmf[13 ] � tmf1(3)

There are analogous (non-Galois) descent results when A � B is:

The same statements hold if we replace K with
KB, THH, or TC.



RESULTS

AROUND THE ARLQ CONJECTURE
We also give a new proof of Mitchell’s theorem:

Let R � Alg(Mod(Z)). Then
K(n)�K(R) = 0, �n � 2 and implicit primes p.

K(n)�K(KU) = 0, �n � 3 and implicit primes p � {2,3,5}.
The new method also proves:

Combining this with Ausoni-Rognes Thm. for p � 5,
gives the conclusion for all primes.

Galois descent and localization gives the result for
KO, ku, and ko.



PROVING GALOIS DESCENT

EASY CASE
Thomason observed proving Q-Galois descent for fields is easy:

Given A � B a G-Galois extension of fields,
there is a transfer map: K0(B) � K0(A) which is Q-surjective.

[B] �� |G| · [A]

A transfer argument now shows:
K(A) � Q ��� (K(B)hG) � Q ��� (K(B) � Q)hG

Moreover the equivalences imply K0(B) � Q � K0(A) � Q.

So surjectivity is necessary and sufficient for the equivalences!



PROVING GALOIS DESCENT

THE TRANSFER ARGUMENT

A � B, G-Galois ������������� KG(B) � CAlg(SpG)

K(B) = KG(B)eK(A) = KG(B)G

Have fiber sequence:
F = HomKG(B)

�
�EG � KG(B),KG(B)

�G
� K(A) � K(B)hG

Want to show LfnF = 0

F is an (�EG � KG(B))G-module
Suffices to show Lfn(�EG � KG(B))G = 0

(Take n = 0 for Thomason’s argument)



PROVING GALOIS DESCENT

THE TRANSFER ARGUMENT
Have fiber sequence:

and a map: K(B) �

Composite K(B) � K(A) is the transfer.
K(B)hG

Ind��� K(A) � R = (�EG � KG(B))G

By assumption K0(B) � Q
tr� K0(A) � Q

Want to show LfnR = 0

So �0R� Q = 0 R� Q = 0 (Thomason’s argument)

LfnR = 0, �n � 0 and primes p.��

��

QED



PROVING GALOIS DESCENT

SUMMARY FOR GALOIS DESCENT

So if A � B is a G-Galois extension then
the induced maps:

LT(K(A)) � LT(K(B)hG) � (LTK(B))hG

are equivalences for any periodic localization LT

K0(B) � Q � K0(A) � Q

if and only if

This is the explicit condition we check for our examples.



BOUNDED CHROMATIC COMPLEXITY THEOREM

BOUNDED CHROMATIC COMPLEXITY THEOREM
THEOREM (CLAUSEN-MATHEW-NAUMANN-N)

is surjective then
K(n + k)�E = 0 for all k � 0

IndGP :
⊕

A⊂G,|A|=pn−1

E0(BA)⊗Q → E0(BG)⊗Q

Proof:

Let E � CAlg(Sp) and G = C�n
p . If

K(n + k) � E � � �� R = LK(n+k)(En+k � E) � �
�� �0R� Q = 0

R�(BC�m
p ) = �p(n+k)mR�(pt.)

Use E � R and implied bound on ranks to see R�(pt.) � Q = 0



BOUNDED CHROMATIC COMPLEXITY THEOREM

BOUNDED CHROMATIC COMPLEXITY THEOREM

IndGP :
⊕

A⊂G,|A|=pn−1

E0(BA)⊗Q ! E0(BG)⊗Q
The condition:

is hard to directly check when E = K(R), R � CAlg(Sp).

Instead consider:
K(R,G)=K-theory of R-modules with a G-action

which are non-equivariantly compact.
There are natural maps K(R,H) � F(BH+,K(R)).
Suffices to check our condition on K0(R,H) � Q.



BOUNDED CHROMATIC COMPLEXITY THEOREM

MITCHELL TYPE THEOREMS

THEOREM (CLAUSEN-MATHEW-NAUMANN-N)

is surj. for all primes p.

is surj. for p � {2,3,5}.

COR:

K(2 + k)�K(Z) = 0 and K(3 + k)�K(KU) = 0 �k � 0 at these primes.

IndC
×2
p

P :
⊕

H!C×2
p

K0(Z,H)⊗Q → K0(Z,C×2
p )⊗Q

IndC
×3
p

P :
⊕

H!C×3
p

K0(KU,H)⊗Q → K0(KU,C×3
p )⊗Q



BOUNDED CHROMATIC COMPLEXITY THEOREM

MITCHELL’S THEOREM

Regular rep and p-times a non-trivial character define

which then define a map Cp � Cp � PU(p).

Obtain a Cp � Cp-action on CPp�1 with proper isotropy.

=� [HZ � CPp�1] � Im IndCp�Cp
P � K0(Z,Cp � Cp)

Postnikov filtration =� [HZ � CPp�1] = p[HZ]

So IndCp�Cp
P is Q-surjective.

two maps Cp � U(p)



BOUNDED CHROMATIC COMPLEXITY THEOREM

BOUNDING CHROMATIC COMPLEXITY OF K(KU)
THEOREM (A. BOREL 1960)

There is an embedding C�3
p � E8 which is not contained in a torus

�� p � {2,3,5}.

Obtain action of C�3
p on E8/T with proper isotropy.

=� [KU � E8/T] � Im IndC
�3
p

P � K0(KU,C�3
p )

THEOREM (MATHEW-NAUMANN-N 2015)

KU � E8/T �
�

696729600
KU

There is an equivariant equivalence:

So IndC�3
p

P is Q-surjective.



THANK YOU!


