ON AND AROUND SOME Conjectures of Ausoni & Rognes

- JUSTIN NOEL UNIVERSITY OF REGENSBURG
- NIKO NAUMANN UNIVERSITY OF REGENSBURG
- AKHIL MATHEW HARVARD UNIVERSITY
- DUSTIN CLAUSEN UNIVERSITY OF COPENHAGEN

ALGEBRAIC K-THEORY

 $\begin{array}{c} \mathsf{K}(-)\colon Ring\to \mathsf{Sp}_{\geq 0}\\ \\ \text{restricts to}\\ \\ \mathsf{K}(-)\colon \mathsf{CRing}\to \mathsf{CAlg}(\mathsf{Sp}_{> 0}) \end{array}$

$$\begin{split} \mathsf{K}_0(\mathsf{R}) &= \pi_0 \mathsf{K}(\mathsf{R}) = \mathbb{Z}\{\mathsf{Iso}(\mathsf{Mod}_{f.g.\mathsf{proj}}(\mathsf{R}))\}/\sim \\ \mathsf{Given:} \ \mathsf{0} \to \mathsf{A} \to \mathsf{B} \to \mathsf{C} \to \mathsf{0} \qquad [\mathsf{B}] \sim [\mathsf{C}] + [\mathsf{A}] \end{split}$$

(K is also defined on exact cats, schemes Cat_{∞}^{ex} , and Waldhausen cats)

YOU ARE SUPPOSED TO CARE ABOUT K-THEORY

Pic(R)Br(R) $CH_i(R)$ All connect to $K_*(R)$

Grothendieck-Riemann-Roch Theorem:

LICHTENBAUM-QUILLEN TYPE CONJECTURES

QUILLEN (1974 ICM)

`One might hope to have a spectral sequence, analogous to the Atiyah-Hirzebruch spectral sequence of topological K-theory: $\mathsf{E}_2^{\mathrm{s},t} = \mathsf{H}_{\acute{e}^{\mathrm{t}}}^{\mathrm{s}}(\mathsf{A};\mathbb{Z}_{\ell}(t/2)) \Rightarrow \pi_{t-s}\mathsf{K}(\mathsf{A})_{\ell}$

converging for t-s>dim(A)+1.'

THM. THOMASON (1985) THOMASON–TROBAUGH (1990)

Suppose A noetherian of finite Krull dimension, $\ell \in GL_1(A)$, and... Then:

$$\exists \mathsf{E}_{2}^{s,t} = \mathsf{H}_{\acute{e}t}^{s}(\mathsf{A}; \mathbb{Z}_{\ell}(t/2)) \Rightarrow \pi_{t-s}\mathsf{L}_{\mathsf{K}(1)}\mathsf{K}(\mathsf{A}).$$

K(1) is the mod ℓ Morava K-theory.

LQ-TYPE CONJECTURES CONTINUED

LQ Conjecture remix:

 $K(A)_\ell \to L_{K(1)}K(A)$ has coconnective fiber.

$$\implies \begin{array}{l} \text{THM. MITCHELL (1990)} \\ \\ L_{K(n)}K(A) = 0, \forall n \geq 2. \end{array}$$

 $L_{K(n)}A = 0$, $\forall n \ge 1$ and $L_{K(1)}K(A)$ is usually not zero.

 \implies K(-) raises chromatic complexity of discrete rings. Red-shift!

BRAVE NEW RINGS

Waldhausen predicted K-theory extends: K(-): Ring $\subset Alg(Sp) \rightarrow Sp_{>0}$ K(-): $CRing \subset CAlg(Sp) \rightarrow CAlg(Sp_{>0})$ Moreover $S_{(p)} \xrightarrow{\simeq} holim_n L_n S$ THM. MCCLURE–STAFFELT (1993) $K(S_{(p)}) = A(*;p) \xrightarrow{\simeq} holim_n K(L_nS)$

So K-theory of spaces can be studied via the chromatic filtration.

GALOIS DESCENT

Thomason's descent result reduces to Galois descent:

THM. THOMASON (1985)

 $\mathsf{A}\to\mathsf{B}$ a finite G-Galois extension of fields satisfying ... Then the induced map: $\mathsf{K}(\mathsf{A})\to\mathsf{K}(\mathsf{B})^{h\mathsf{G}}$ is an equivalence after $\mathsf{K}(1)$ -localization.

ROGNES-GALOIS EXTENSIONS

DEFN. ROGNES (2005)

Let $A \in CAlg(Sp)$, $B \in CAlg(Mod_A)$ equipped with a G-action. Then $A \rightarrow B$ is a G-Galois extension if: $A \xrightarrow{\simeq} B^{hG}$ $B \wedge_A B \xrightarrow{\simeq} \prod_G B$

The K(n)-local analogue is a K(n)-local G-Galois extension.

AUSONI-ROGNES GALOIS DESCENT CONJECTURE

Let F(n + 1) be a type (n + 1)-finite ℓ -local spectrum

with v_{n+1} -element v.

CONJ. AUSONI-ROGNES (2008)

CONJECTURE 4.2. Let $A \rightarrow B$ be a K(n)-local G-Galois extension. Then there is a homotopy equivalence

$$T \wedge K(A) \to T \wedge (K(B))^{hG}$$
.

Note T(n + 1)-equivalence $\implies K(n + 1)$ -equivalence.

AUSONI-ROGNES LQ-TYPE CONJECTURE

Let V = F(n + 1).

CONJ. AUSONI-ROGNES (2008)

CONJECTURE 4.3. Let B be a suitably finite K(n)-local commutative **S**-algebra (for example $L_{K(n)}S \rightarrow B$ could be a G-Galois extension). Then the map $V \wedge K(B) \rightarrow T \wedge K(B)$ induces an isomorphism on homotopy groups in sufficiently high degrees.

 $\implies \mathsf{T}(m)_*\mathsf{K}(\mathsf{B}) = \mathsf{K}(m)_*\mathsf{K}(\mathsf{B}) = \mathbf{0}, \forall m > n + \mathbf{1}.$

 \implies K-theory increases the bound on the chromatic complexity.

EVIDENCE FOR CONJECTURES

If $A \rightarrow B$ is a G-Galois extension of characteristic 0 fields, and A satisfies Thomason's conditions, the AR-Galois-descent conjecture holds by Thomason's theorem.

For the C_{p-1} -Galois extension $L_p \rightarrow KU_p$,

the AR-Galois-descent conjecture holds by work of Ausoni-Rognes.

EVIDENCE FOR CONJECTURES

When B is a field of char 0 satisfying Thomason's conditions,

then the Rost-Voevodsky proof of the Bloch-Kato conjecture

 $\stackrel{\text{Levine}}{\Longrightarrow}$ the LQ=ARLQ-conjecture holds for B.

When $p \ge 5$, $B \in \{L_p, KU_p, I_p, ku_p\}$,

then, by calculations of Ausoni-Rognes,

the ARLQ-conjecture holds for B.

SOLUTIONS TO THE AR-GALOIS DESCENT CONJECTURE

THM. CLAUSEN-MATHEW-NAUMANN-N (2016)

Let $A \rightarrow B$ one of the following finite G-Galois extensions: Any G-Galois extension of fields (no Thomason hypotheses)

KO \rightarrow **KU** $E_n^{hG} \rightarrow E_n$, for $G \subset \mathbb{G}_n$ (Meier-Naumann-N)

Any G-Galois extension of TMF $[\frac{1}{n}]$

Any G-Galois extension of $Tmf_0(n)$

Then the induced maps:

$$\begin{split} & \mathsf{L}_{\mathsf{T}}\mathsf{K}(\mathsf{A}) \to \mathsf{L}_{\mathsf{T}}(\mathsf{K}(\mathsf{B})^{h\mathsf{G}}) \to (\mathsf{L}_{\mathsf{T}}\mathsf{K}(\mathsf{B}))^{h\mathsf{G}} \\ & \text{are equivalences for any periodic localization } \mathsf{L}_{\mathsf{T}}. \\ & (\mathsf{e.g.}, \mathsf{L}_{\mathsf{T}(n)}, \mathsf{L}_{\mathsf{K}(n)}, \mathsf{L}_{n}^{\mathsf{f}}, \mathsf{L}_{n}) \end{split}$$

FURTHER RESULTS ON DESCENT With $A \rightarrow B$ and L_T as above: There is an N > 2, such that associated HFPSS $\mathbf{E}_{\mathbf{2}}^{s,t} = \mathbf{H}^{s}(\mathbf{G}; \pi_{t}\mathbf{L}_{\mathsf{T}}\mathbf{K}(\mathbf{B})) \Rightarrow \pi_{t-s}\mathbf{L}_{\mathsf{T}}\mathbf{K}(\mathbf{A})$ collapses at E_N with a horizontal vanishing line. There are analogous (non-Galois) descent results when $A \rightarrow B$ is: A faithfully flat, finite map, such that π_*B is a projective π_*A -module. $tmf[\frac{1}{3}] \rightarrow tmf_1(3)$ $ko \rightarrow ku$

The same statements hold if we replace K with K^B, THH, or TC.

AROUND THE ARLQ CONJECTURE

- We also give a new proof of Mitchell's theorem:
 - Let $R \in Alg(Mod(\mathbb{Z}))$. Then

 $K(n)_*K(R) = 0$, $\forall n \ge 2$ and implicit primes p.

The new method also proves:

 $K(n)_*K(KU) = 0$, $\forall n \ge 3$ and implicit primes $p \in \{2, 3, 5\}$.

Combining this with Ausoni-Rognes Thm. for $p \ge 5$, gives the conclusion for all primes. Galois descent and localization gives the result for KO, ku, and ko.

EASY CASE

Thomason observed proving Q-Galois descent for fields is easy:

Given A \rightarrow B a G-Galois extension of fields, there is a transfer map: $K_0(B) \rightarrow K_0(A)$ which is Q-surjective.

 $[B]\mapsto |G|\cdot [A]$

A transfer argument now shows:

 $\mathsf{K}(\mathsf{A})\otimes\mathbb{Q}\xrightarrow{\simeq}(\mathsf{K}(\mathsf{B})^{h\mathsf{G}})\otimes\mathbb{Q}\xrightarrow{\simeq}(\mathsf{K}(\mathsf{B})\otimes\mathbb{Q})^{h\mathsf{G}}$

Moreover the equivalences imply $K_0(B) \otimes \mathbb{Q} \twoheadrightarrow K_0(A) \otimes \mathbb{Q}$.

So surjectivity is necessary and sufficient for the equivalences!

THE TRANSFER ARGUMENT

 $A \to B, \text{G-Galois} \xrightarrow{\text{Merling, Barwick et al}} K_G(B) \in \text{CAlg}(\text{Sp}_G)$

 $K(A)=K_G(B)^G \qquad K(B)=K_G(B)^e$

Have fiber sequence:

 $F = Hom_{K_G(B)} \left(\widetilde{E}G \wedge K_G(B), K_G(B) \right)^G \rightarrow K(A) \rightarrow K(B)^{hG}$

 $\begin{array}{l} \mbox{Want to show } L_n^f F = 0 \\ \mbox{(Take n = 0 for Thomason's argument)} \\ \mbox{F is an } (\widetilde{E}G \wedge K_G(B))^G \mbox{-module} \\ \mbox{Suffices to show } L_n^f (\widetilde{E}G \wedge K_G(B))^G = 0 \end{array}$

THE TRANSFER ARGUMENT

Have fiber sequence: and a map: $K(B) \rightarrow K(B)_{hG} \xrightarrow{Ind} K(A) \rightarrow R = (\widetilde{E}G \wedge K_G(B))^G$ Composite $K(B) \rightarrow K(A)$ is the transfer. Want to show $L_n^f R = 0$ By assumption $K_0(B) \otimes \mathbb{Q} \xrightarrow{tr} K_0(A) \otimes \mathbb{Q}$

So $\pi_0 R \otimes \mathbb{Q} = 0 \iff R \otimes \mathbb{Q} = 0$ (Thomason's argument)

 $\overset{\text{May Conj}}{\longleftrightarrow} \quad \mathbf{L}_n^f \mathbf{R} = \mathbf{0}, \forall n \ge \mathbf{0} \text{ and primes } p.$

SUMMARY FOR GALOIS DESCENT

So if A \rightarrow B is a G-Galois extension then the induced maps:

$L_T(K(A)) \to L_T(K(B)^{hG}) \to (L_TK(B))^{hG}$

are equivalences for any periodic localization L_T if and only if $K_0(B) \otimes \mathbb{Q} \twoheadrightarrow K_0(A) \otimes \mathbb{Q}$

This is the explicit condition we check for our examples.

BOUNDED CHROMATIC COMPLEXITY THEOREM

THEOREM (CLAUSEN-MATHEW-NAUMANN-N)

Let
$$E \in CAlg(Sp)$$
 and $G = C_p^{\times n}$. If
 $Ind_{\mathcal{P}}^{G} : \bigoplus_{A \subset G, |A| = p^{n-1}} E^0(BA) \otimes \mathbb{Q} \to E^0(BG) \otimes \mathbb{Q}$

is surjective then

$$K(n+k)_*E = 0$$
 for all $k \ge 0$

Proof: $K(n+k) \wedge E \simeq * \iff R = L_{K(n+k)}(E_{n+k} \wedge E) \simeq *$ $\stackrel{May Conj}{\iff} \pi_0 R \otimes \mathbb{Q} = 0$ $R^*(BC_p^{\times m}) = \bigoplus_{p^{(n+k)m}} R^*(pt.)$

Use $E \rightarrow R$ and implied bound on ranks to see $R^*(pt.) \otimes \mathbb{Q} = 0$

BOUNDED CHROMATIC COMPLEXITY THEOREM

The condition:

$$Ind_{\mathcal{P}}^{G}: \bigoplus_{A \subset G, |A| = p^{n-1}} E^{0}(BA) \otimes \mathbb{Q} \twoheadrightarrow E^{0}(BG) \otimes \mathbb{Q}$$

is hard to directly check when E = K(R), $R \in CAlg(Sp)$.

Instead consider:

K(R, G)=K-theory of R-modules with a G-action which are non-equivariantly compact.

There are natural maps $\mathsf{K}(\mathsf{R},\mathsf{H})\to\mathsf{F}(\mathsf{BH}_+,\mathsf{K}(\mathsf{R})).$

Suffices to check our condition on $K_0(R,H)\otimes \mathbb{Q}.$

MITCHELL TYPE THEOREMS

THEOREM (CLAUSEN-MATHEW-NAUMANN-N)

$$\operatorname{Ind}_{\mathcal{P}}^{C_{p}^{\times}}:\bigoplus_{\mathsf{H}\subsetneq \mathsf{C}_{p}^{\times 2}}\mathsf{K}_{0}(\mathbb{Z},\mathsf{H})\otimes\mathbb{Q}\to\mathsf{K}_{0}(\mathbb{Z},\mathsf{C}_{p}^{\times 2})\otimes\mathbb{Q}$$

is surj. for all primes p.

$$Ind_{\mathcal{P}}^{\mathsf{C}_{p}^{\times 3}}: \bigoplus_{\mathsf{H}\subsetneq \mathsf{C}_{p}^{\times 3}}\mathsf{K}_{0}(\mathsf{KU},\mathsf{H})\otimes \mathbb{Q} \to \mathsf{K}_{0}(\mathsf{KU},\mathsf{C}_{p}^{\times 3})\otimes \mathbb{Q}$$

is surj. for $p \in \{2,3,5\}.$

COR:

 $K(2+k)_*K(\mathbb{Z}) = 0$ and $K(3+k)_*K(KU) = 0$ $\forall k \ge 0$ at these primes.

MITCHELL'S THEOREM

Regular rep and *p***-times a non-trivial character define** two maps $C_{\rho} \rightarrow U(\rho)$ which then define a map $C_{\rho} \times C_{\rho} \rightarrow PU(\rho)$. Obtain a $C_{\rho} \times C_{\rho}$ -action on $\mathbb{C}P^{\rho-1}$ with proper isotropy. $\implies [H\mathbb{Z} \wedge \mathbb{C}P^{p-1}] \in Im Ind_{\mathcal{P}}^{C_{p} \times C_{p}} \subset K_{0}(\mathbb{Z}, C_{p} \times C_{p})$ Postnikov filtration $\implies [H\mathbb{Z} \wedge \mathbb{C}P^{p-1}] = p[H\mathbb{Z}]$ So $\operatorname{Ind}_{\mathcal{D}}^{C_{\rho} \times C_{\rho}}$ is \mathbb{Q} -surjective.

BOUNDING CHROMATIC COMPLEXITY OF K(KU)

THEOREM (A. BOREL 1960)

There is an embedding $C_{\rho}^{\times 3} \to E_8$ which is not contained in a torus $\iff p \in \{2, 3, 5\}.$

 $\begin{array}{l} \text{Obtain action of } C_{\rho}^{\times 3} \text{ on } E_8/T \text{ with proper isotropy.} \\ \Longrightarrow \ [\mathsf{KU} \wedge \mathsf{E}_8/T] \in \mathsf{Im} \ \mathsf{Ind}_{\mathcal{P}}^{\mathsf{C}_{\rho}^{\times 3}} \subset \mathsf{K}_0(\mathsf{KU},\mathsf{C}_{\rho}^{\times 3}) \end{array}$

THEOREM (MATHEW-NAUMANN-N 2015)

There is an equivariant equivalence:

 $KU \wedge E_8/T \simeq \bigvee_{696729600} KU$

So $\operatorname{Ind}_{\mathcal{P}}^{C_{\rho}^{\times 3}}$ is Q-surjective.

THANK YOU!