Equivariant cohomology of representation spheres and $\operatorname{Pic}(S_G)$ -graded homotopy groups

Justin Noel

Max Planck Institute for Mathematics

March 14, 2013

What should homology and cohomology groups be indexed over?

What should homology and cohomology groups be indexed over?

• Normally $H_*(X)$ and $H^*(X)$ is graded over \mathbb{N} .

What should homology and cohomology groups be indexed over?

- Normally $H_*(X)$ and $H^*(X)$ is graded over \mathbb{N} .
- Generalized (co)homology (e.g., K-theory) is graded over \mathbb{Z} .

What should homology and cohomology groups be indexed over?

- Normally $H_*(X)$ and $H^*(X)$ is graded over \mathbb{N} .
- Generalized (co)homology (e.g., K-theory) is graded over \mathbb{Z} .
- Equivariant (co)homology is graded over \mathbb{N} and sometimes RO(G).

• Cohomology theories ↔ spectra.

- Cohomology theories ↔ spectra.
- Suppose $X \in Top_* \subset Spectra, M \in AbGroup$.

- Cohomology theories ↔ spectra.
- Suppose $X \in Top_* \subset Spectra, M \in AbGroup$.
- Then $\exists HM$ in spectra, satisfying

- Cohomology theories ↔ spectra.
- Suppose $X \in Top_* \subset Spectra, M \in AbGroup$.
- Then $\exists HM$ in spectra, satisfying

 $[S^i, HM \land X] \cong H_i(X; M)$

(always reduced).

- Cohomology theories ↔ spectra.
- Suppose $X \in Top_* \subset Spectra, M \in AbGroup$.
- Then $\exists HM$ in spectra, satisfying

 $[S^i, HM \wedge X] \cong H_i(X; M)$

(always reduced).

• $[S^i \wedge X, HM] \cong H^{-i}(X; M)$

- Cohomology theories ↔ spectra.
- Suppose $X \in Top_* \subset Spectra, M \in AbGroup$.
- Then $\exists HM$ in spectra, satisfying

 $[S^i, HM \land X] \cong H_i(X; M)$

(always reduced).

• $[S^i \wedge X, HM] \cong H^{-i}(X; M) (\exists S^{-i}).$

- Cohomology theories ↔ spectra.
- Suppose $X \in Top_* \subset Spectra, M \in AbGroup$.
- Then $\exists HM$ in spectra, satisfying

 $[S^i, HM \land X] \cong H_i(X; M)$

(always reduced).

- $[S^i \wedge X, HM] \cong H^{-i}(X; M) (\exists S^{-i}).$
- Similarly for generalized (co)homology.

• $E_*(-), E^*(-), * \in \mathbb{Z}$.

- $E_*(-), E^*(-), * \in \mathbb{Z}$.
- $\mathbb{Z} \cong \{S^i\}_{i \in \mathbb{Z}}.$

- $E_*(-), E^*(-), * \in \mathbb{Z}$.
- $\mathbb{Z} \cong \{S^i\}_{i \in \mathbb{Z}}.$
- $i+j \in \mathbb{Z} \leftrightarrow S^i \wedge S^j \simeq S^{i+j}$.

- $E_*(-), E^*(-), * \in \mathbb{Z}$.
- $\mathbb{Z} \cong \{S^i\}_{i \in \mathbb{Z}}$.
- $i+j \in \mathbb{Z} \leftrightarrow S^i \wedge S^j \simeq S^{i+j}$.
- So \mathbb{Z} -grading \leftrightarrow 'sphere-grading.'

- $E_*(-), E^*(-), * \in \mathbb{Z}$.
- $\mathbb{Z} \cong \{S^i\}_{i \in \mathbb{Z}}$.
- $i+j \in \mathbb{Z} \leftrightarrow S^i \wedge S^j \simeq S^{i+j}$.
- So ℤ-grading ↔ 'sphere-grading.'
- Sign conventions come from

- $E_*(-), E^*(-), * \in \mathbb{Z}$.
- $\mathbb{Z} \cong \{S^i\}_{i \in \mathbb{Z}}.$
- $i+j \in \mathbb{Z} \leftrightarrow S^i \wedge S^j \simeq S^{i+j}$.
- So ℤ-grading ↔ 'sphere-grading.'
- Sign conventions come from

$$\tau \colon S^i \wedge S^j \to S^j \wedge S^i$$

which has degree $(-1)^{ij}$.

• They are small, so wedge axiom holds:

$$E_i(\bigvee_{j\in J} X_j) \cong \bigoplus_{j\in J} E_i(X_j).$$

• They are small, so wedge axiom holds:

$$E_i(\bigvee_{j\in J} X_j) \cong \bigoplus_{j\in J} E_i(X_j).$$

• They are small, so wedge axiom holds:

$$E_i(\bigvee_{j\in J} X_j) \cong \bigoplus_{j\in J} E_i(X_j).$$

$$E_i(\Sigma X) \cong E_i(S^1 \wedge X)$$

• They are small, so wedge axiom holds:

$$E_i(\bigvee_{j\in J} X_j) \cong \bigoplus_{j\in J} E_i(X_j).$$

$$E_i(\Sigma X) \cong E_i(S^1 \wedge X)$$
$$\cong [S^i, E \wedge S^1 \wedge X]$$

• They are small, so wedge axiom holds:

$$E_i(\bigvee_{j\in J} X_j) \cong \bigoplus_{j\in J} E_i(X_j).$$

$$E_{i}(\Sigma X) \cong E_{i}(S^{1} \wedge X)$$
$$\cong [S^{i}, E \wedge S^{1} \wedge X]$$
$$\cong [S^{i} \wedge S^{-1}, E \wedge S^{1} \wedge X \wedge S^{-1}]$$

• They are small, so wedge axiom holds:

$$E_i(\bigvee_{j\in J} X_j) \cong \bigoplus_{j\in J} E_i(X_j).$$

$$E_{i}(\Sigma X) \cong E_{i}(S^{1} \wedge X)$$
$$\cong [S^{i}, E \wedge S^{1} \wedge X]$$
$$\cong [S^{i} \wedge S^{-1}, E \wedge S^{1} \wedge X \wedge S^{-1}]$$
$$\cong [S^{i-1}, E \wedge X]$$

• They are small, so wedge axiom holds:

$$E_i(\bigvee_{j\in J} X_j) \cong \bigoplus_{j\in J} E_i(X_j).$$

$$E_{i}(\Sigma X) \cong E_{i}(S^{1} \wedge X)$$
$$\cong [S^{i}, E \wedge S^{1} \wedge X]$$
$$\cong [S^{i} \wedge S^{-1}, E \wedge S^{1} \wedge X \wedge S^{-1}]$$
$$\cong [S^{i-1}, E \wedge X]$$
$$\cong E_{i-1}(X).$$

Requirements for indices

$\pi \star HA$

Requirements for indices

• Wedge axiom \implies Indexing objects are 'small' (dualizable).

- **Q** Wedge axiom \implies Indexing objects are 'small' (dualizable).
- Suspension axiom

- **Q** Wedge axiom \implies Indexing objects are 'small' (dualizable).

- **Q** Wedge axiom \implies Indexing objects are 'small' (dualizable).
- **2** Suspension axiom \implies Indexing objects are invertible.

 $\pi \star HA$

Requirements for indices

- **(**) Wedge axiom \implies Indexing objects are 'small' (dualizable).
- **2** Suspension axiom \implies Indexing objects are invertible.
- The (abelian) group of such objects is called the Picard group.

Päuschen

• Can define Picard group, Pic(*C*) for any symmetric monoidal category *C* (dualizable, w/ inverses).

- Can define Picard group, Pic(*C*) for any symmetric monoidal category *C* (dualizable, w/ inverses).
- $\operatorname{Pic}(S) \cong \mathbb{Z}$,

- Can define Picard group, Pic(*C*) for any symmetric monoidal category *C* (dualizable, w/ inverses).
- $\operatorname{Pic}(S) \cong \mathbb{Z}$, so nothing new here.
- Can define Picard group, Pic(*C*) for any symmetric monoidal category *C* (dualizable, w/ inverses).
- $\operatorname{Pic}(S) \cong \mathbb{Z}$, so nothing new here.
- Want 'more spheres.'

• Let G be a finite group.

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \bigcirc G$.

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \bigcirc G$.
- Here is a picture of the unit disc of a non-trivial representation of C_5 .

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \bigcirc G$.
- Here is a picture of the unit disc of a non-trivial representation of C_5 .

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \bigcirc G$.
- Here is a picture of the unit disc of a non-trivial representation of C_5 .

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \bigcirc G$.
- Here is a picture of the unit disc of a non-trivial representation of C_5 .

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \bigcirc G$.
- Here is a picture of the unit disc of a non-trivial representation of C_5 .

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \bigcirc G$.
- Here is a picture of the unit disc of a non-trivial representation of C_5 .

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \bigcirc G$.
- Here is a picture of the unit disc of a non-trivial representation of C_5 .

 $\pi_{\star}HA$

 $\pi_{\star}HA$

 $\pi_{\star}HA$

 $\pi_{\star}HA$

 $\pi \star HA$

• To construct S^V , collapse the boundary, S(V), of the unit disc in V to a point.

• We will need a CW-decomposition on S^V .

 $\pi \star HA$

- We will need a CW-decomposition on S^V .
- I.e. a *CW*-decomposition such that *G* takes cells to cells while never mapping a cell to itself in a non-trivial way.

 $\pi \star HA$

- We will need a CW-decomposition on S^V .
- I.e. a *CW*-decomposition such that *G* takes cells to cells while never mapping a cell to itself in a non-trivial way.
- E.g., the color slices above.

• Construction gives a morphism $RO(G) \rightarrow Pic(S_G)$.

• Construction gives a morphism $RO(G) \rightarrow Pic(S_G)$.

Factors as

 $RO(G) \twoheadrightarrow JO(G) \hookrightarrow \operatorname{Pic}(S_G).$

- Construction gives a morphism $RO(G) \rightarrow Pic(S_G)$.
- Factors as

```
RO(G) \twoheadrightarrow JO(G) \hookrightarrow \operatorname{Pic}(S_G).
```

• $JO(G) := RO(G)/(\sim)$.

- Construction gives a morphism $RO(G) \rightarrow Pic(S_G)$.
- Factors as

$$RO(G) \rightarrow JO(G) \hookrightarrow Pic(S_G).$$

- $JO(G) := RO(G)/(\sim).$
- $V \sim W \Leftrightarrow S^V \simeq S^W$.

- Construction gives a morphism $RO(G) \rightarrow Pic(S_G)$.
- Factors as

$$RO(G) \rightarrow JO(G) \hookrightarrow Pic(S_G).$$

- $JO(G) := RO(G)/(\sim)$.
- $V \sim W \Leftrightarrow S^V \simeq S^W$.
- Let us find a toy case where we can compute groups indexed over $\operatorname{Pic}(S_G)$.

Known results

Theorem (tom Dieck-Petrie)

Rank $JO(G) = Rank \operatorname{Pic}(S_G) \iff G$ is nilpotent.

Known results

Theorem (tom Dieck-Petrie)

Rank $JO(G) = Rank \operatorname{Pic}(S_G) \iff G$ is nilpotent.

Theorem (Kawakubo)

$$JO(G) \cong \operatorname{Pic}(S_G) \iff G = C_n \text{ or } D_{2 \cdot 2^n}.$$

 $\pi_{\star}HA$

Theorem (Kawakubo)

$$JO(S_{C_n}) \cong \operatorname{Pic}(S_{C_n}) \cong \bigoplus_{d|n} \left(\mathbb{Z} \oplus (\mathbb{Z}/d\mathbb{Z}^{\times}/\langle \pm 1 \rangle) \right).$$

Theorem (Kawakubo)

$$JO(S_{C_n}) \cong \operatorname{Pic}(S_{C_n}) \cong \bigoplus_{d|n} \left(\mathbb{Z} \oplus (\mathbb{Z}/d\mathbb{Z}^{\times}/\langle \pm 1 \rangle) \right).$$

• Torsion free summands generated by a rotation of order d.

Theorem (Kawakubo)

$$JO(S_{C_n}) \cong \operatorname{Pic}(S_{C_n}) \cong \bigoplus_{d|n} \left(\mathbb{Z} \oplus (\mathbb{Z}/d\mathbb{Z}^{\times}/\langle \pm 1 \rangle) \right).$$

- Torsion free summands generated by a rotation of order d.
- Torsion summand generated by differences of such representations.

Päuschen

• Let's compute the $Pic(S_G)$ -graded homotopy of something.

Let's compute the Pic(S_G)-graded homotopy of something.
HM?

Let's compute the Pic(S_G)-graded homotopy of something.
HM?!

- Let's compute the $Pic(S_G)$ -graded homotopy of something.
- *HM*?!
- Essentially need to compute the equivariant homology and cohomology of these invertible objects (e.g., representation spheres).

- Let's compute the $Pic(S_G)$ -graded homotopy of something.
- *HM*?!
- Essentially need to compute the equivariant homology and cohomology of these invertible objects (e.g., representation spheres).
- How do we do this?

- Let's compute the $Pic(S_G)$ -graded homotopy of something.
- *HM*?!
- Essentially need to compute the equivariant homology and cohomology of these invertible objects (e.g., representation spheres).
- How do we do this?
- What should *M* be equivariantly?

• Given a CW-complex X let

 $C_i(X) := \mathbb{Z}\{i \text{-cells of } X\},\$

 $\pi_{\star}HA$

• Given a CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of } X\},$$
$$\widetilde{C}_0(X) := \ker(C_0(X) \to C_0(*)).$$

 $\pi \star HA$
• Given a CW-complex X let

$$C_{i}(X) := \mathbb{Z}\{i \text{-cells of } X\},\$$

$$\widetilde{C}_{0}(X) := \ker(C_{0}(X) \to C_{0}(*)).$$

$$\bullet \ H_{*}(X) \cong H_{*}\left[\cdots C_{i+1}(X) \xrightarrow{\partial} C_{i}(X) \xrightarrow{\partial} C_{i-1}(X) \cdots \xrightarrow{\partial} \widetilde{C}_{0}(X)\right].$$

Reminder: Cellular homology

• Given a CW-complex X let

 $C_i(X) := \mathbb{Z}\{i\text{-cells of } X\},$ $\widetilde{C}_0(X) := \ker(C_0(X) \to C_0(*)).$

- $H_*(X) \cong H_* \left[\cdots C_{i+1}(X) \xrightarrow{\partial} C_i(X) \xrightarrow{\partial} C_{i-1}(X) \cdots \xrightarrow{\partial} \widetilde{C}_0(X) \right].$
- *H*^{*}(*X*) is calculated by taking the dual of this complex and then taking cohomology.

$\pi_{\star}HA$

Bredon homology with coefficients in $\ensuremath{\mathbb{Z}}$

• Given a G-CW-complex X let

 $C_i(X) := \mathbb{Z}\{i \text{-cells of } X\}$

$\pi_{\star}HA$

Bredon homology with coefficients in $\ensuremath{\mathbb{Z}}$

• Given a G-CW-complex X let

 $C_i(X) := \mathbb{Z}\{i \text{-cells of } X\} \bigcirc G.$

Bredon homology with coefficients in $\ensuremath{\mathbb{Z}}$

• Given a G-CW-complex X let

 $C_i(X) := \mathbb{Z}\{i \text{-cells of } X\} \bigcirc G.$

• For a subgroup $K \leq G$, let $C_i^K(X) \subset C_i(X)$ be the subgroup of K-invariant chains.

Bredon homology with coefficients in $\ensuremath{\mathbb{Z}}$

• Given a G-CW-complex X let

 $C_i(X) := \mathbb{Z}\{i \text{-cells of } X\} \bigcirc G.$

• For a subgroup $K \leq G$, let $C_i^K(X) \subset C_i(X)$ be the subgroup of *K*-invariant chains.

•
$$H^K_*(X) \cong H_*\left[\cdots C^K_{i+1}(X) \xrightarrow{\partial} C^K_i(X) \xrightarrow{\partial} C^K_{i-1}(X) \cdots \xrightarrow{\partial} \widetilde{C}^K_0(X)\right].$$

$\pi_{\star}HA$

Bredon homology with coefficients in $\ensuremath{\mathbb{Z}}$

• Given a G-CW-complex X let

 $C_i(X) := \mathbb{Z}\{i \text{-cells of } X\} \bigcirc G.$

• For a subgroup $K \leq G$, let $C_i^K(X) \subset C_i(X)$ be the subgroup of K-invariant chains.

•
$$H^K_*(X) \cong H_*\left[\cdots C^K_{i+1}(X) \xrightarrow{\partial} C^K_i(X) \xrightarrow{\partial} C^K_{i-1}(X) \cdots \xrightarrow{\partial} \widetilde{C}^K_0(X)\right].$$

• When K is the trivial subgroup: $H_*^K(X) \cong H_*(X)$.

Bredon homology with coefficients in $\ensuremath{\mathbb{Z}}$

• Given a G-CW-complex X let

$$C_i(X) := \mathbb{Z}\{i \text{-cells of } X\} \bigcirc G.$$

- For a subgroup $K \leq G$, let $C_i^K(X) \subset C_i(X)$ be the subgroup of K-invariant chains.
- $H^K_*(X) \cong H_*\left[\cdots C^K_{i+1}(X) \xrightarrow{\partial} C^K_i(X) \xrightarrow{\partial} C^K_{i-1}(X) \cdots \xrightarrow{\partial} \widetilde{C}^K_0(X)\right].$
- When K is the trivial subgroup: $H_*^K(X) \cong H_*(X)$.
- For cohomology first take the invariants on the cochains.

• Other coefficient systems?

- Other coefficient systems?
- ${\ }$ Want $H_i^{(-)}(X)$ to also be an acceptable coefficient system.

- Other coefficient systems?
- Want $H_i^{(-)}(X)$ to also be an acceptable coefficient system.
- These functors assign an abelian group to each subgroup of *G* and have induction, restriction, and action maps, satisfying some axioms.

- Other coefficient systems?
- Want $H_i^{(-)}(X)$ to also be an acceptable coefficient system.
- These functors assign an abelian group to each subgroup of *G* and have induction, restriction, and action maps, satisfying some axioms.
- Such functors should form an abelian category.

Definition

 $\mathcal{O}(G)$ is the category of finite G-sets and G-morphisms.

Definition

 $\mathcal{O}(G)$ is the category of finite *G*-sets and *G*-morphisms.

Definition

A Mackey functor is a pair

 $M_* : \mathcal{O}(G) \to \mathcal{A}bGroup$ $M^* : \mathcal{O}(G)^{\mathrm{op}} \to \mathcal{A}bGroup$

such that

Definition

 $\mathcal{O}(G)$ is the category of finite *G*-sets and *G*-morphisms.

Definition

A Mackey functor is a pair

 $M_* : \mathcal{O}(G) \to \mathcal{A}bGroup$ $M^* : \mathcal{O}(G)^{\mathrm{op}} \to \mathcal{A}bGroup$

such that

• $M_*(X) = M^*(X)$.

Definition

 $\mathcal{O}(G)$ is the category of finite *G*-sets and *G*-morphisms.

Definition

A Mackey functor is a pair

$$\begin{aligned} M_* \colon \mathcal{O}(G) \to \mathcal{A}bGroup \\ M^* \colon \mathcal{O}(G)^{\mathrm{op}} \to \mathcal{A}bGroup \end{aligned}$$

such that

• $M_*(X) = M^*(X)$.

•
$$M^*(X \coprod Y) = M^*(X) \times M^*(Y).$$

Definition

 $\mathcal{O}(G)$ is the category of finite G-sets and G-morphisms.

Definition

A Mackey functor is a pair

$$\begin{aligned} M_* \colon \mathcal{O}(G) \to \mathcal{A}bGroup \\ M^* \colon \mathcal{O}(G)^{\mathrm{op}} \to \mathcal{A}bGroup \end{aligned}$$

such that

- $M_*(X) = M^*(X)$.
- $M^*(X \coprod Y) = M^*(X) \times M^*(Y).$
- M satisfies a double coset formula.

 $\pi_{\star}HA$

• Alternatively M assigns to each $H \leq G$ an abelian group M(G/H).

- Alternatively M assigns to each $H \leq G$ an abelian group M(G/H).
- M(G/H) has action of $W_GH = N_GH/H$.

- Alternatively M assigns to each $H \leq G$ an abelian group M(G/H).
- M(G/H) has action of $W_GH = N_GH/H$.
- From $H \leq K$

- Alternatively M assigns to each $H \leq G$ an abelian group M(G/H).
- M(G/H) has action of $W_GH = N_GH/H$.
- From $H \leq K$ we obtain a map $\pi: G/H \rightarrow G/K$ inducing a *restriction* maps

- Alternatively M assigns to each $H \leq G$ an abelian group M(G/H).
- M(G/H) has action of $W_GH = N_GH/H$.
- From $H \leq K$ we obtain a map $\pi: G/H \rightarrow G/K$ inducing a *restriction* maps

$$M(G/H) \xrightarrow{M_* \pi = \operatorname{Res}_H^K} M(G/K)$$

 $\pi \star HA$

- Alternatively M assigns to each $H \leq G$ an abelian group M(G/H).
- M(G/H) has action of $W_GH = N_GH/H$.
- From $H \leq K$ we obtain a map $\pi: G/H \rightarrow G/K$ inducing a *restriction* maps

$$M(G/H) \xrightarrow{M_* \pi = \operatorname{Res}_H^K} M(G/K)$$

and a transfer map

 $\pi \star HA$

- Alternatively M assigns to each $H \leq G$ an abelian group M(G/H).
- M(G/H) has action of $W_GH = N_GH/H$.
- From $H \leq K$ we obtain a map $\pi: G/H \rightarrow G/K$ inducing a *restriction* maps

$$M(G/H) \xrightarrow{M_* \pi = \operatorname{Res}_H^K} M(G/K)$$

and a transfer map

$$M(G/K) \xrightarrow{M^* \pi = \operatorname{Ind}_H^K} M(G/H).$$

• Given a *G*-module *M*

• Given a *G*-module *M* we can construct a functor M(-):

 $\pi_{\star}HA$

• Given a G-module M we can construct a functor M(-):

.

• $M(G/H) = \mathcal{M}od_G(\mathbb{Z}[G/H], M)$

- Given a G-module M we can construct a functor M(-):
- $M(G/H) = \mathcal{M}od_G(\mathbb{Z}[G/H], M) \cong M^H$.

- Given a G-module M we can construct a functor M(-):
- $M(G/H) = \mathcal{M}od_G(\mathbb{Z}[G/H], M) \cong M^H$.
- For $K \leq H$,

$$M(G/H) = M^H \xrightarrow{\operatorname{Res}_K^H} M(G/K) = M^K$$

 $\pi \star HA$

- Given a G-module M we can construct a functor M(-):
- $M(G/H) = \mathcal{M}od_G(\mathbb{Z}[G/H], M) \cong M^H$.
- For $K \leq H$,

$$M(G/H) = M^H \xrightarrow{\operatorname{Res}_K^H} M(G/K) = M^K$$

induced by quotient map

 $q:\mathbb{Z}[G/K]\to\mathbb{Z}[G/H].$

 $\pi \star HA$

- Given a G-module M we can construct a functor M(-):
- $M(G/H) = \mathcal{M}od_G(\mathbb{Z}[G/H], M) \cong M^H$.
- For $K \leq H$,

$$M(G/H) = M^H \xrightarrow{\operatorname{Res}_K^H} M(G/K) = M^K$$

induced by quotient map

$$q:\mathbb{Z}[G/K]\to\mathbb{Z}[G/H].$$

• We also have a transfer

$$M(G/K) = M^K \xrightarrow{\operatorname{Ind}_K^H} M(G/H) = M^H$$

 $\pi \star HA$

- Given a G-module M we can construct a functor M(-):
- $M(G/H) = \mathcal{M}od_G(\mathbb{Z}[G/H], M) \cong M^H$.
- For $K \leq H$,

$$M(G/H) = M^H \xrightarrow{\operatorname{Res}_K^H} M(G/K) = M^K$$

induced by quotient map

$$q:\mathbb{Z}[G/K]\to\mathbb{Z}[G/H].$$

• We also have a transfer

$$M(G/K) = M^K \xrightarrow{\operatorname{Ind}_K^H} M(G/H) = M^H$$

induced by summing over the fibers of q.

Definition

Let A(G) be the Grothendieck group of finite G-sets up to iso.

Definition

Let A(G) be the Grothendieck group of finite G-sets up to iso.
[X ∐Y] = [X] + [Y]

Definition

Let A(G) be the Grothendieck group of finite G-sets up to iso.

- $[X \bigsqcup Y] = [X] + [Y]$
- $[X \times Y] = [X][Y]$

Definition

Let A(G) be the Grothendieck group of finite G-sets up to iso.

- $[X \coprod Y] = [X] + [Y]$
- $[X \times Y] = [X][Y]$
- $G/H \mapsto A(H)$ is a Mackey functor.
Definition

Let A(G) be the Grothendieck group of finite G-sets up to iso.

- $[X \coprod Y] = [X] + [Y]$
- $[X \times Y] = [X][Y]$
- $G/H \mapsto A(H)$ is a Mackey functor.
- Restriction of G-action to H-action defines $\operatorname{Res}_{H}^{G}$.

Definition

Let A(G) be the Grothendieck group of finite G-sets up to iso.

- $[X \coprod Y] = [X] + [Y]$
- $[X \times Y] = [X][Y]$
- $G/H \mapsto A(H)$ is a Mackey functor.
- Restriction of G-action to H-action defines $\operatorname{Res}_{H}^{G}$.
- Crossing with G/H defines $\operatorname{Ind}_{H}^{G}$.

 $A(C_9)$

• $X = \coprod_i G/H_i$ (Decomposition into orbits).

- $X = \coprod_i G/H_i$ (Decomposition into orbits).
- Rank A(G) = # Conjugacy classes of subgroups of G.

Note

- $X = \coprod_i G/H_i$ (Decomposition into orbits).
- Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

Not<u>e</u>

- $X = \coprod_i G/H_i$ (Decomposition into orbits).
- Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

Note

- $X = \coprod_i G/H_i$ (Decomposition into orbits).
- Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

	$[C_{9}/C_{9}]$	$[C_{9}/C_{3}]$	$[C_9]$
$[C_9/C_9]$			
$[C_9/C_3]$			
$[C_{9}]$			

$$A(C_9)$$

- $X = \coprod_i G/H_i$ (Decomposition into orbits).
- Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

	$[C_{9}/C_{9}]$	$[C_9/C_3]$	$[C_9]$
$[C_{9}/C_{9}]$	$[C_{9}/C_{9}]$	$[C_9/C_3]$	$[C_9]$
$[C_{9}/C_{3}]$	$[C_{9}/C_{3}]$		
$[C_9]$	$[C_9]$		

Note

- $X = \coprod_i G/H_i$ (Decomposition into orbits).
- Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

	$[C_{9}/C_{9}]$	$[C_9/C_3]$	$[C_9]$
$[C_{9}/C_{9}]$	$[C_{9}/C_{9}]$	$[C_9/C_3]$	$[C_9]$
$[C_{9}/C_{3}]$	$[C_{9}/C_{3}]$		
$[C_9]$	$[C_9]$?

$$A(C_9)$$

- $X = \coprod_i G/H_i$ (Decomposition into orbits).
- Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

$$A(C_9)$$

- $X = \coprod_i G/H_i$ (Decomposition into orbits).
- Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

Note

- $X = \coprod_i G/H_i$ (Decomposition into orbits).
- Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

	$[C_{9}/C_{9}]$	$[C_9/C_3]$	$[C_9]$
$[C_{9}/C_{9}]$	$[C_{9}/C_{9}]$	$[C_9/C_3]$	$[C_9]$
$[C_{9}/C_{3}]$	$[C_{9}/C_{3}]$	$3[C_9/C_3]$	$3[C_{9}]$
$[C_9]$	$[C_9]$	$3[C_{9}]$	$9[C_9]$

 $\pi_{\star}HA$

• A(H) is a ring such that A is a commutative Green functor.

- A(H) is a ring such that A is a commutative Green functor.
- $\operatorname{Res}_{K}^{H}$ is a commutative ring map.

- A(H) is a ring such that A is a commutative Green functor.
- $\operatorname{Res}_{K}^{H}$ is a commutative ring map.

•
$$\operatorname{Ind}_{K}^{H}(a) \cdot b = \operatorname{Ind}_{K}^{H}(a \cdot \operatorname{Res}_{K}^{H}(b)).$$

- A(H) is a ring such that A is a commutative Green functor.
- $\operatorname{Res}_{K}^{H}$ is a commutative ring map.
- $\operatorname{Ind}_{K}^{H}(a) \cdot b = \operatorname{Ind}_{K}^{H}(a \cdot \operatorname{Res}_{K}^{H}(b)).$
- Every Mackey functor is an A-module.

- A(H) is a ring such that A is a commutative Green functor.
- $\operatorname{Res}_{K}^{H}$ is a commutative ring map.
- $\operatorname{Ind}_{K}^{H}(a) \cdot b = \operatorname{Ind}_{K}^{H}(a \cdot \operatorname{Res}_{K}^{H}(b)).$
- Every Mackey functor is an A-module.
- Analogue of \mathbb{Z} equivariantly.

Definition

Given a Mackey functor M

Definition

Given a Mackey functor M let $M \otimes G/H$ be the Mackey functor defined by

Definition

Given a Mackey functor M let $M \otimes G/H$ be the Mackey functor defined by

$(M \otimes G/H)(G/K) = M(G/H \times G/K)$

Definition

Given a Mackey functor M let $M \otimes G/H$ be the Mackey functor defined by

$(M\otimes G/H)(G/K)=M(G/H\times G/K)$

Example

$A\otimes G\cong \mathbb{Z}[G]$

• Given a G-CW-complex X let

 $C_i(X)$: $M \otimes \{i \text{-cells of } X\} \bigcirc G$.

• Given a G-CW-complex X let

 $C_i(X)$: $M \otimes \{i \text{-cells of } X\} \bigcirc G$.

• Chain complex of Mackey functors.

• Given a G-CW-complex X let

 $C_i(X)$: $M \otimes \{i \text{-cells of } X\} \bigcirc G$.

• Chain complex of Mackey functors.

 $H^K_*(X)$

Bredon homology with coefficients in \boldsymbol{M}

• Given a G-CW-complex X let

 $C_i(X)$: $M \otimes \{i \text{-cells of } X\} \bigcirc G$.

• Chain complex of Mackey functors.

$$H^{K}_{*}(X) \cong H_{*}\left[\cdots C_{i+1}(X)(G/K) \xrightarrow{\partial} C_{i}(X)(G/K) \xrightarrow{\partial} C_{i-1}(X)(G/K) \\ \cdots \xrightarrow{\partial} \widetilde{C}_{0}(X)(G/K)\right]$$

Bredon homology with coefficients in \boldsymbol{M}

• Given a G-CW-complex X let

 $C_i(X)$: $M \otimes \{i \text{-cells of } X\} \bigcirc G$.

• Chain complex of Mackey functors.

$$H^{K}_{*}(X) \cong H_{*}\left[\cdots C_{i+1}(X)(G/K) \xrightarrow{\partial} C_{i}(X)(G/K) \xrightarrow{\partial} C_{i-1}(X)(G/K) \\ \cdots \xrightarrow{\partial} \widetilde{C}_{0}(X)(G/K)\right]$$

• When $M = \mathbb{Z}$ (trivial action) then we get previous definition.

• Given a G-CW-complex X let

 $C_i(X)$: $M \otimes \{i \text{-cells of } X\} \bigcirc G$.

• Chain complex of Mackey functors.

$$H^{K}_{*}(X) \cong H_{*}\left[\cdots C_{i+1}(X)(G/K) \xrightarrow{\partial} C_{i}(X)(G/K) \xrightarrow{\partial} C_{i-1}(X)(G/K) \\ \cdots \xrightarrow{\partial} \widetilde{C}_{0}(X)(G/K)\right]$$

- When $M = \mathbb{Z}$ (trivial action) then we get previous definition.
- For cohomology one takes a dual complex, with $\operatorname{Ind}_{H}^{G} \leftrightarrow \operatorname{Res}_{H}^{G}$.

Päuschen

• Fix a finite group G and determine explicit models for all of the irreducible *real* representations of G.

- Fix a finite group G and determine explicit models for all of the irreducible *real* representations of G.
- Construct an explicit *G*-CW decomposition on each irreducible representation sphere.

- Fix a finite group G and determine explicit models for all of the irreducible *real* representations of G.
- Construct an explicit *G*-CW decomposition on each irreducible representation sphere.
- Compute $H^G_*(S^V)$ and $H^*_G(S^V)$.

- Fix a finite group G and determine explicit models for all of the irreducible *real* representations of G.
- Construct an explicit *G*-CW decomposition on each irreducible representation sphere.
- Compute $H^G_*(S^V)$ and $H^*_G(S^V)$.
- Assemble the computations to compute $H^G_*(S^{V+W})$.

Homology

Consider ρ_n the rotation of order $n \ (n > 2)$

Homology

Consider ρ_n the rotation of order $n \ (n > 2)$

$$A \otimes C_n \xleftarrow{g-1} A \otimes C_n$$

Homology

Consider ρ_n the rotation of order $n \ (n > 2)$

$$A \otimes C_n \xleftarrow{g-1} A \otimes C_n$$
Homology

Consider ρ_n the rotation of order $n \ (n > 2)$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

$A \xleftarrow{\epsilon} A \otimes C_n \xleftarrow{g-1} A \otimes C_n$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

$$\mathbb{Z} = \mathbb{Z}^{|C_n|} = \mathbb{Z}^{|C_n|}$$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

$$\mathbb{Z} \xleftarrow{\epsilon} \mathbb{Z}^{|C_n|} \xleftarrow{[g]-[1]} \mathbb{Z}^{|C_n|}$$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

Evaluate at C_n/e :

$$\mathbb{Z} \xleftarrow{\epsilon} \mathbb{Z}^{|C_n|} \xleftarrow{[g]-[1]} \mathbb{Z}^{|C_n|}$$

$$H_0^e(S^{\rho_n}) \cong 0$$

Justin Noel

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

$$\mathbb{Z} \xleftarrow{\epsilon} \mathbb{Z}^{|C_n|} \xleftarrow{[g]-[1]} \mathbb{Z}^{|C_n|}$$

$$H_0^e(S^{\rho_n}) \cong 0 \qquad \qquad H_1^e(S^{\rho_n}) \cong 0$$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

$$\mathbb{Z} \xleftarrow{\epsilon} \mathbb{Z}^{|C_n|} \xleftarrow{[g]-[1]} \mathbb{Z}^{|C_n|}$$

$$H_0^e(S^{\rho_n}) \cong 0 \qquad \qquad H_1^e(S^{\rho_n}) \cong 0 \qquad \qquad H_2^e(S^{\rho_n}) \cong \mathbb{Z}$$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

$$\mathbb{Z} \xleftarrow{\epsilon} \mathbb{Z}^{|C_n|} \xleftarrow{[g]-[1]} \mathbb{Z}^{|C_n|}$$

$$H^e_0(S^{\rho_n}) \cong 0 \qquad H^e_1(S^{\rho_n}) \cong 0 \qquad H^e_2(S^{\rho_n}) \cong \mathbb{Z}$$
 Get $H_*(S^2)$ as expected.

$A \xleftarrow{\epsilon} A \otimes C_n \xleftarrow{g-1} A \otimes C_n$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

 $H^{C_n}_*(S^{
ho_n};A)$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

Evaluate at C_n/C_n :

$A(C_n)$ \mathbb{Z} \mathbb{Z}

 $H^{C_n}_*(S^{
ho_n};A)$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

$$A(C_n) \xleftarrow{\operatorname{Ind}_e^{C_n}} \mathbb{Z} \xleftarrow{0} \mathbb{Z}$$

 $\overline{H^{C_n}_*(S^{
ho_n};A)}$

 $\pi_{\bigstar}HA$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

Evaluate at C_n/C_n :

$$A(C_n) \xleftarrow{\operatorname{Ind}_e^{C_n}} \mathbb{Z} \xleftarrow{0} \mathbb{Z}$$

 $H_0^{C_n}(S^{\rho_n}) \cong A(C_n)/[C_n]$

 $\overline{H^{C_n}_*(S^{
ho_n};A)}$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

$$A(C_n) \xleftarrow{\operatorname{Ind}_e^{C_n}} \mathbb{Z} \xleftarrow{0} \mathbb{Z}$$

$$H_0^{C_n}(S^{\rho_n}) \cong A(C_n)/[C_n] \qquad H_1^{C_n}(S^{\rho_n}) \cong 0$$

 $\overline{H^{C_n}_*(S^{
ho_n};A)}$

$$A \stackrel{\epsilon}{\leftarrow} A \otimes C_n \stackrel{g-1}{\longleftarrow} A \otimes C_n$$

$$A(C_n) \xleftarrow{\operatorname{Ind}_e^{C_n}} \mathbb{Z} \xleftarrow{0} \mathbb{Z}$$

$$H_0^{C_n}(S^{\rho_n}) \cong A(C_n)/[C_n] \qquad H_1^{C_n}(S^{\rho_n}) \cong 0 \qquad H_2^{C_n}(S^{\rho_n}) \cong \mathbb{Z}$$

 $A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n$

 $A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n$

$$A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n$$

 $A(C_n)$ \mathbb{Z} \mathbb{Z}

$$A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n$$

 $A(C_n) \xrightarrow{\operatorname{Res}_e^{C_n}} \mathbb{Z} \xrightarrow{0} \mathbb{Z}$

 $\overline{H^*_{C_n}}(S^{
ho_n};A)$

$$A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n$$

$$A(C_n) \xrightarrow{\operatorname{Res}_e^{C_n}} \mathbb{Z} \xrightarrow{0} \mathbb{Z}$$

$$H^0_{C_n}(S^{\rho_n}) \cong \tilde{A}(C_n) = \ker(A(C_n) \xrightarrow{\operatorname{Res}_e^{C_n}} \mathbb{Z})$$

 $\overline{H^*_{C_n}}(S^{
ho_n};A)$

$$A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n$$

$$A(C_n) \xrightarrow{\operatorname{Res}_e^{C_n}} \mathbb{Z} \xrightarrow{0} \mathbb{Z}$$

$$\begin{split} H^0_{C_n}(S^{\rho_n}) &\cong \tilde{A}(C_n) = \ker(A(C_n) \xrightarrow{\operatorname{Res}_{e}^{C_n}} \mathbb{Z}) \\ H^1_{C_n}(S^{\rho_n}) &\cong 0 \end{split}$$

 $\overline{H^*_{C_n}}(S^{
ho_n};A)$

$$A \xrightarrow{\Delta} A \otimes C_n \xrightarrow{g^{-1} - 1} A \otimes C_n$$

$$A(C_n) \xrightarrow{\operatorname{Res}_e^{C_n}} \mathbb{Z} \xrightarrow{0} \mathbb{Z}$$

$$\begin{split} H^0_{C_n}(S^{\rho_n}) &\cong \tilde{A}(C_n) = \ker(A(C_n) \xrightarrow{\operatorname{Res}_{e}^{C_n}} \mathbb{Z}) \\ H^1_{C_n}(S^{\rho_n}) &\cong 0 \\ H^2_{C_n}(S^{\rho_n}) &\cong \mathbb{Z}. \end{split}$$

 \bullet Once we know $C_\ast(S^V)$ and $C_\ast(S^W)$ have

• Once we know $C_*(S^V)$ and $C_*(S^W)$ have

 $H_*(S^{V+W}) \cong H_*(C_*(S^W) \otimes C_*(S^V))$

 \bullet Once we know $C_\ast(S^V)$ and $C_\ast(S^W)$ have

$$H_*(S^{V+W}) \cong H_*(C_*(S^W) \otimes C_*(S^V))$$

• Can filter bicomplex in two ways to get two spectral sequences.

• Once we know $C_*(S^V)$ and $C_*(S^W)$ have

$$H_*(S^{V+W}) \cong H_*(C_*(S^W) \otimes C_*(S^V))$$

- Can filter bicomplex in two ways to get two spectral sequences.
- Alternatively these are AHSS's with coefficients in

• Once we know $C_*(S^V)$ and $C_*(S^W)$ have

$$H_*(S^{V+W}) \cong H_*(C_*(S^W) \otimes C_*(S^V))$$

- Can filter bicomplex in two ways to get two spectral sequences.
- Alternatively these are AHSS's with coefficients in

$$E_{s,t}^2 = H_s(S^V; H_t(S^W)) \Longrightarrow H_{s+t}(S^{V+W}),$$

• Once we know $C_*(S^V)$ and $C_*(S^W)$ have

$$H_*(S^{V+W}) \cong H_*(C_*(S^W) \otimes C_*(S^V))$$

- Can filter bicomplex in two ways to get two spectral sequences.
- Alternatively these are AHSS's with coefficients in

$$\begin{split} &E_{s,t}^2 = H_s(S^V; \ H_t(S^W)) \Longrightarrow H_{s+t}(S^{V+W}), \\ &E_{s,t}^2 = H_s(S^W; \ H_t(S^V)) \Longrightarrow H_{s+t}(S^{V+W}). \end{split}$$

• (Reverse induction) If V is the pullback of a representation of G/H, then can pullback complex.

 $\pi \star HA$

- (Reverse induction) If V is the pullback of a representation of G/H, then can pullback complex.
- 2 (Reciprocity) Use the formula

$$S^{W} \wedge \operatorname{Ind}_{H}^{G} S^{i} \cong \operatorname{Ind}_{H}^{G} \left(\operatorname{Res}_{H}^{G}(S^{W}) \wedge S^{i} \right)$$

to simplify E_1 .

 $\pi \star HA$

- (Reverse induction) If V is the pullback of a representation of G/H, then can pullback complex.
- 2 (Reciprocity) Use the formula

$$S^{W} \wedge \operatorname{Ind}_{H}^{G} S^{i} \cong \operatorname{Ind}_{H}^{G} \left(\operatorname{Res}_{H}^{G}(S^{W}) \wedge S^{i} \right)$$

to simplify E_1 .

(Functoriality) Use subgroup functoriality to determine the differentials and multiplicative relations.

 $\pi \star HA$

- (Reverse induction) If V is the pullback of a representation of G/H, then can pullback complex.
- (Reciprocity) Use the formula

$$S^{W} \wedge \operatorname{Ind}_{H}^{G} S^{i} \cong \operatorname{Ind}_{H}^{G} \left(\operatorname{Res}_{H}^{G}(S^{W}) \wedge S^{i} \right)$$

to simplify E_1 .

- (Functoriality) Use subgroup functoriality to determine the differentials and multiplicative relations.
- (Competing computations) Decompose the representation in different ways.

 $M \stackrel{\epsilon}{\leftarrow} M \otimes C_n \stackrel{g-1}{\longleftarrow} M \otimes C_n$

$$M \stackrel{\epsilon}{\leftarrow} M \otimes C_n \stackrel{g-1}{\longleftarrow} M \otimes C_n$$

Evaluate at C_n/C_n with $M = H_*(S^{\rho_n})$:

$$M \stackrel{\epsilon}{\leftarrow} M \otimes C_n \stackrel{g-1}{\longleftarrow} M \otimes C_n$$

Evaluate at C_n/C_n with $M = H_*(S^{\rho_n})$:

 $H^{C_n}_*(S^{\rho_n}) \qquad H^e_*(S^2) \quad H^e_*(S^2)$

$$M \stackrel{\epsilon}{\leftarrow} M \otimes C_n \stackrel{g-1}{\longleftarrow} M \otimes C_n$$

$$H^{C_n}_*(S^{\rho_n}) \xleftarrow{\operatorname{Ind}_e^{C_n}} H^e_*(S^2) \xleftarrow{0} H^e_*(S^2)$$

$$M \stackrel{c}{\leftarrow} M \otimes C_n \stackrel{g-1}{\longleftarrow} M \otimes C_n$$

$$H^{C_n}_*(S^{\rho_n}) \xleftarrow{\operatorname{Ind}_e^{C_n}} H^e_*(S^2) \xleftarrow{0} H^e_*(S^2)$$

$$H_0^{C_n}(S^{2\rho_n}) \cong A(C_n)/[C_n]$$

$$M \stackrel{\epsilon}{\leftarrow} M \otimes C_n \stackrel{g-1}{\longleftarrow} M \otimes C_n$$

$$H^{C_n}_*(S^{\rho_n}) \xleftarrow{\operatorname{Ind}_e^{C_n}} H^e_*(S^2) \xleftarrow{0} H^e_*(S^2)$$

$$H_0^{C_n}(S^{2\rho_n}) \cong A(C_n)/[C_n]$$
$$H_{\text{odd}}^{C_n}(S^{2\rho_n}) \cong 0$$

$$M \stackrel{\epsilon}{\leftarrow} M \otimes C_n \stackrel{g-1}{\longleftarrow} M \otimes C_n$$

$$H^{C_n}_*(S^{\rho_n}) \xleftarrow{\operatorname{Ind}_e^{C_n}} H^e_*(S^2) \xleftarrow{0} H^e_*(S^2)$$

$$H_0^{C_n}(S^{2\rho_n}) \cong A(C_n)/[C_n]$$
$$H_{\text{odd}}^{C_n}(S^{2\rho_n}) \cong 0$$
$$H_2^{C_n}(S^{2\rho_n}) \cong \mathbb{Z}/(n)$$

$$M \stackrel{\epsilon}{\leftarrow} M \otimes C_n \stackrel{g-1}{\longleftarrow} M \otimes C_n$$

$$H^{C_n}_*(S^{\rho_n}) \xleftarrow{\operatorname{Ind}_e^{C_n}} H^e_*(S^2) \xleftarrow{0} H^e_*(S^2)$$

$$H_0^{C_n}(S^{2\rho_n}) \cong A(C_n)/[C_n]$$
$$H_{\text{odd}}^{C_n}(S^{2\rho_n}) \cong 0$$
$$H_2^{C_n}(S^{2\rho_n}) \cong \mathbb{Z}/(n)$$
$$H_4^{C_n}(S^{2\rho_n}) \cong \mathbb{Z}$$

 $\pi_{\star}HA$ $H^{C_n}_*(S^{m
ho_n};A)$

•
$$H_0^{C_n}((S^{m\rho_n}) \cong A(C_n)/([C_n]).$$

 $H^{C_n}_*(S^{m
ho_n};A)$

•
$$H_0^{C_n}((S^{m\rho_n}) \cong A(C_n)/([C_n]).$$

•
$$H^{C_n}_{\text{odd}}((S^{m\rho_n})\cong 0.$$

$$H^{C_n}_*(S^{m
ho_n};A)$$

•
$$H_0^{C_n}((S^{m\rho_n}) \cong A(C_n)/([C_n]).$$

•
$$H^{C_n}_{\text{odd}}((S^{m\rho_n})\cong 0.$$

• For
$$0 < i < m$$
, $H_{2i}^{C_n}(S^{m\rho_n}) \cong \mathbb{Z}/(n)$.

$$H^{C_n}_*(S^{m
ho_n};A)$$

•
$$H_0^{C_n}((S^{m\rho_n}) \cong A(C_n)/([C_n]).$$

•
$$H_{\text{odd}}^{C_n}((S^{m\rho_n})\cong 0.$$

• For
$$0 < i < m$$
, $H_{2i}^{C_n}(S^{m\rho_n}) \cong \mathbb{Z}/(n)$.

•
$$H_{2m}^{C_n}(S^{m\rho_n})\cong\mathbb{Z}.$$

 $H^{C_n}_*(S^{m
ho_n};A)$

 $\pi \star HA$

• One can compute these groups inductively and get a regular pattern.

•
$$H_0^{C_n}((S^{m\rho_n}) \cong A(C_n)/([C_n]).$$

•
$$H^{C_n}_{\text{odd}}((S^{m\rho_n})\cong 0.$$

• For
$$0 < i < m$$
, $H_{2i}^{C_n}(S^{m\rho_n}) \cong \mathbb{Z}/(n)$.

•
$$H_{2m}^{C_n}(S^{m\rho_n})\cong\mathbb{Z}.$$

• Can also compute directly from a single chain complex.

Päuschen

Multiplicative relations

• There are also external products

$$H^G_*(S^V) \otimes H^G_*(S^W) \to H^G_*(S^{V+W}).$$

Multiplicative relations

• There are also external products

$$H^G_*(S^V) \otimes H^G_*(S^W) \to H^G_*(S^{V+W}).$$

• These relate the (co)homology groups of different representation spheres.

Multiplicative relations

• There are also external products

$$H^G_*(S^V) \otimes H^G_*(S^W) \to H^G_*(S^{V+W}).$$

- These relate the (co)homology groups of different representation spheres.
- Can deduce from spectral sequence and Green functor relations.

• $i_*(1) = a_V \in H_0^G(S^V)$ induced by inclusion of $S^0 \to S^V$.

- $i_*(1) = a_V \in H_0^G(S^V)$ induced by inclusion of $S^0 \to S^V$.
- V orientable, $u_V \in H^G_{|V|}(S^V)$ (generates top class).

- $i_*(1) = a_V \in H_0^G(S^V)$ induced by inclusion of $S^0 \to S^V$.
- V orientable, $u_V \in H^G_{|V|}(S^V)$ (generates top class).
- V orientable, $v_V \in H_G^{|V|}(S^V)$ (generates top class).

- $i_*(1) = a_V \in H_0^G(S^V)$ induced by inclusion of $S^0 \to S^V$.
- V orientable, $u_V \in H^G_{|V|}(S^V)$ (generates top class).
- V orientable, $v_V \in H_G^{|V|}(S^V)$ (generates top class).
- $a_V a_W = a_{V+W}$.

- $i_*(1) = a_V \in H_0^G(S^V)$ induced by inclusion of $S^0 \to S^V$.
- V orientable, $u_V \in H^G_{|V|}(S^V)$ (generates top class).
- V orientable, $v_V \in H_G^{|V|}(S^V)$ (generates top class).
- $a_V a_W = a_{V+W}$.
- $u_V u_W = u_{V+W}$.

- $i_*(1) = a_V \in H_0^G(S^V)$ induced by inclusion of $S^0 \to S^V$.
- V orientable, $u_V \in H^G_{|V|}(S^V)$ (generates top class).
- V orientable, $v_V \in H_G^{|V|}(S^V)$ (generates top class).
- $a_V a_W = a_{V+W}$.
- $u_V u_W = u_{V+W}$.
- $v_{\rho_n}u_{\rho_n} = [C_n]$

- $i_*(1) = a_V \in H_0^G(S^V)$ induced by inclusion of $S^0 \to S^V$.
- V orientable, $u_V \in H^G_{|V|}(S^V)$ (generates top class).
- V orientable, $v_V \in H_G^{|V|}(S^V)$ (generates top class).
- $a_V a_W = a_{V+W}$.
- $u_V u_W = u_{V+W}$.
- $v_{\rho_n}u_{\rho_n} = [C_n]$
- $v_{\rho_n}v_{\rho_n} = [C_n]v_{2\rho_n}$

Computations for $G = C_2$, $M = \mathbb{Z}$

 $\pi_{\star}HA$

Computations for $\overline{G} = \overline{C_2}, \ \overline{M} = \mathbb{Z}$

Computations for $G = C_2$, $M = \mathbb{Z}$

Computations for $G = C_2 M = \mathbb{Z}$

Justin Noel

 $\pi_{\star}HA$

 $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Brace yourselves

 $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

$C_*(S^{\rho_5}) \otimes A$

0 1 2

$$0 \qquad A \xleftarrow{\epsilon} A \otimes C_5 \xleftarrow{g-1} A \otimes C_5$$

Justin Noel

 $H^{C_5}_{*}(S^{
ho_5ho_5^{\otimes k}};A)$

 $C^*(S^{\rho_5}) \otimes A \cong C_{-*}(S^{-\rho_5}) \otimes A$

Justin Noel

 $H^{C_{5}}_{*}(S^{\rho_{5}-\rho_{5}^{\otimes k}};A)$

 $H^{C_5}(S^{\rho_5-\rho_5^{\otimes k}};A)$

Diagonal gives total degree.

 $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Compute cohomological (1) direction first.

 $\pi_{\star}HA$ $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Compute cohomological (\downarrow) direction first.

 $\pi_{\star}HA$ $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Compute cohomological (\downarrow) direction first.

$$0 \qquad 1 \qquad 2$$

$$0 \qquad \tilde{A}(C_5) \qquad 0 \qquad 0$$

$$-1 \qquad 0 \qquad 0 \qquad 0$$

$$-2 \qquad \mathbb{Z} \xleftarrow{?} \mathbb{Z} \xleftarrow{?} \mathbb{Z}$$

 $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Compute homological (\leftarrow) direction first.

 $\pi_{\star}HA$ $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Compute homological (\leftarrow) direction first.
$\pi_{\star}HA$ $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Compute homological (\leftarrow) direction first.

 $\pi_{\star}HA$ $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Resolve differentials for first spectral sequence.

 $\pi_{\star}HA$ $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Resolve differentials for second spectral sequence.

 $H^{C_5}_*(S^{\rho_5-\rho_5^{\otimes k}};A)$

Resolve differentials for second spectral sequence.

 $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Resolve differentials for second spectral sequence.

$$egin{array}{ccccccccc} 0 & 1 & 2 \ 0 & ilde{A}(C_5) & 0 & 0 \ -1 & 0 & 0 & 0 \ -2 & 0 & 0 & \mathbb{Z} \end{array}$$

 $H^{C_5}_*(S^{
ho_5ho_5^{\otimes k}};A)$

Resolve differentials for second spectral sequence.

We have an extension:

$$0 \to \tilde{A}(C_5) \to H_0^{C_5}(S^{\rho_5 - \rho_5^{\otimes k}}) \to \mathbb{Z} \to 0$$

$$0 \to \tilde{A}(C_5) \to H_0^{C_5}(S^{\rho_5 - \rho_5^{\otimes k}}) \to \mathbb{Z} \to 0$$

• Our extension problem:

$$0 \to \tilde{A}(C_5) \to H_0^{C_5}(S^{\rho_5 - \rho_5^{\otimes k}}) \to \mathbb{Z} \to 0$$

• Extension splits additively, but not as $A(C_5)$ modules.

$$0 \to \tilde{A}(C_5) \to H_0^{C_5}(S^{\rho_5 - \rho_5^{\otimes k}}) \to \mathbb{Z} \to 0$$

- Extension splits additively, but not as $A(C_5)$ modules.
- Use bicomplex to solve extension.

 $\pi \star HA$

$$0 \to \tilde{A}(C_5) \to H_0^{C_5}(S^{\rho_5 - \rho_5^{\otimes k}}) \to \mathbb{Z} \to 0$$

- Extension splits additively, but not as $A(C_5)$ modules.
- Use bicomplex to solve extension.
- If $k = \pm 1 \mod 5$ get $A(C_5) = H_0^{C_5}(S^0)$.

$$0 \to \tilde{A}(C_5) \to H_0^{C_5}(S^{\rho_5 - \rho_5^{\otimes k}}) \to \mathbb{Z} \to 0$$

- Extension splits additively, but not as $A(C_5)$ modules.
- Use bicomplex to solve extension.
- If $k = \pm 1 \mod 5$ get $A(C_5) = H_0^{C_5}(S^0)$.
- If $k = \pm 2 \mod 5$ get a projective $A(C_5)$ module of rank one.

• We can also determine explicit models for the irreducible real representations of C_n , D_n , A_4 , and S_4 .

- We can also determine explicit models for the irreducible real representations of C_n , D_n , A_4 , and S_4 .
- We can compute the homology and cohomology of these representation spheres.

- We can also determine explicit models for the irreducible real representations of C_n , D_n , A_4 , and S_4 .
- We can compute the homology and cohomology of these representation spheres.
- Calculating $H^G_*(S^{V+W})$ is generally difficult due to complications in the spectral sequence.

- We can also determine explicit models for the irreducible real representations of C_n , D_n , A_4 , and S_4 .
- We can compute the homology and cohomology of these representation spheres.
- Calculating $H^G_*(S^{V+W})$ is generally difficult due to complications in the spectral sequence.
- There is still plenty of other computations left to do.

Twisted tetrahedral representation of Σ_4

 $\pi_{\star}HA$

Twisted tetrahedral representation of Σ_4

 $\pi_{\star}HA$

Twisted tetrahedral representation of Σ_4

 $\pi_{\star}HA$

