
π?HA

Equivariant cohomology of representation spheres
and Pic(SG)-graded homotopy groups

Justin Noel

Max Planck Institute for Mathematics

March 14, 2013

Justin Noel UniBonn, MPIM

π?HA

Gradings

Question
What should homology and cohomology groups be indexed over?

Normally H∗(X) and H∗(X) is graded over N.
Generalized (co)homology (e.g., K-theory) is graded over Z.
Equivariant (co)homology is graded over N and sometimes
RO(G).

Justin Noel UniBonn, MPIM

π?HA

Gradings

Question
What should homology and cohomology groups be indexed over?

Normally H∗(X) and H∗(X) is graded over N.

Generalized (co)homology (e.g., K-theory) is graded over Z.
Equivariant (co)homology is graded over N and sometimes
RO(G).

Justin Noel UniBonn, MPIM

π?HA

Gradings

Question
What should homology and cohomology groups be indexed over?

Normally H∗(X) and H∗(X) is graded over N.
Generalized (co)homology (e.g., K-theory) is graded over Z.

Equivariant (co)homology is graded over N and sometimes
RO(G).

Justin Noel UniBonn, MPIM

π?HA

Gradings

Question
What should homology and cohomology groups be indexed over?

Normally H∗(X) and H∗(X) is graded over N.
Generalized (co)homology (e.g., K-theory) is graded over Z.
Equivariant (co)homology is graded over N and sometimes
RO(G).

Justin Noel UniBonn, MPIM

π?HA

One way to think of gradings

Cohomology theories ↔ spectra.

Suppose X ∈Top∗‘⊂ ’Spectra, M ∈AbGroup.

Then ∃HM in spectra, satisfying

[S i,HM∧ X]∼= Hi(X ; M)

(always reduced).
[S i ∧ X ,HM]∼= H−i(X ; M) (∃S−i).

Similarly for generalized (co)homology.

Justin Noel UniBonn, MPIM

π?HA

One way to think of gradings

Cohomology theories ↔ spectra.
Suppose X ∈Top∗‘⊂ ’Spectra, M ∈AbGroup.

Then ∃HM in spectra, satisfying

[S i,HM∧ X]∼= Hi(X ; M)

(always reduced).
[S i ∧ X ,HM]∼= H−i(X ; M) (∃S−i).

Similarly for generalized (co)homology.

Justin Noel UniBonn, MPIM

π?HA

One way to think of gradings

Cohomology theories ↔ spectra.
Suppose X ∈Top∗‘⊂ ’Spectra, M ∈AbGroup.
Then ∃HM in spectra, satisfying

[S i,HM∧ X]∼= Hi(X ; M)

(always reduced).

[S i ∧ X ,HM]∼= H−i(X ; M) (∃S−i).

Similarly for generalized (co)homology.

Justin Noel UniBonn, MPIM

π?HA

One way to think of gradings

Cohomology theories ↔ spectra.
Suppose X ∈Top∗‘⊂ ’Spectra, M ∈AbGroup.
Then ∃HM in spectra, satisfying

[S i,HM∧ X]∼= Hi(X ; M)

(always reduced).

[S i ∧ X ,HM]∼= H−i(X ; M) (∃S−i).

Similarly for generalized (co)homology.

Justin Noel UniBonn, MPIM

π?HA

One way to think of gradings

Cohomology theories ↔ spectra.
Suppose X ∈Top∗‘⊂ ’Spectra, M ∈AbGroup.
Then ∃HM in spectra, satisfying

[S i,HM∧ X]∼= Hi(X ; M)

(always reduced).
[S i ∧ X ,HM]∼= H−i(X ; M)

(∃S−i).
Similarly for generalized (co)homology.

Justin Noel UniBonn, MPIM

π?HA

One way to think of gradings

Cohomology theories ↔ spectra.
Suppose X ∈Top∗‘⊂ ’Spectra, M ∈AbGroup.
Then ∃HM in spectra, satisfying

[S i,HM∧ X]∼= Hi(X ; M)

(always reduced).
[S i ∧ X ,HM]∼= H−i(X ; M) (∃S−i).

Similarly for generalized (co)homology.

Justin Noel UniBonn, MPIM

π?HA

One way to think of gradings

Cohomology theories ↔ spectra.
Suppose X ∈Top∗‘⊂ ’Spectra, M ∈AbGroup.
Then ∃HM in spectra, satisfying

[S i,HM∧ X]∼= Hi(X ; M)

(always reduced).
[S i ∧ X ,HM]∼= H−i(X ; M) (∃S−i).
Similarly for generalized (co)homology.

Justin Noel UniBonn, MPIM

π?HA

Indexing by spheres

E∗(−), E∗(−),∗ ∈Z.

Z∼= {S i}i∈Z.
i+ j ∈Z↔ S i ∧S j ' S i+ j.
So Z-grading ↔ ‘sphere-grading.’

Sign conventions come from

τ : S i ∧S j → S j ∧S i

which has degree (−1)i j.

Justin Noel UniBonn, MPIM

π?HA

Indexing by spheres

E∗(−), E∗(−),∗ ∈Z.
Z∼= {S i}i∈Z.

i+ j ∈Z↔ S i ∧S j ' S i+ j.
So Z-grading ↔ ‘sphere-grading.’

Sign conventions come from

τ : S i ∧S j → S j ∧S i

which has degree (−1)i j.

Justin Noel UniBonn, MPIM

π?HA

Indexing by spheres

E∗(−), E∗(−),∗ ∈Z.
Z∼= {S i}i∈Z.
i+ j ∈Z↔ S i ∧S j ' S i+ j.

So Z-grading ↔ ‘sphere-grading.’

Sign conventions come from

τ : S i ∧S j → S j ∧S i

which has degree (−1)i j.

Justin Noel UniBonn, MPIM

π?HA

Indexing by spheres

E∗(−), E∗(−),∗ ∈Z.
Z∼= {S i}i∈Z.
i+ j ∈Z↔ S i ∧S j ' S i+ j.
So Z-grading ↔ ‘sphere-grading.’

Sign conventions come from

τ : S i ∧S j → S j ∧S i

which has degree (−1)i j.

Justin Noel UniBonn, MPIM

π?HA

Indexing by spheres

E∗(−), E∗(−),∗ ∈Z.
Z∼= {S i}i∈Z.
i+ j ∈Z↔ S i ∧S j ' S i+ j.
So Z-grading ↔ ‘sphere-grading.’
Sign conventions come from

τ : S i ∧S j → S j ∧S i

which has degree (−1)i j.

Justin Noel UniBonn, MPIM

π?HA

Indexing by spheres

E∗(−), E∗(−),∗ ∈Z.
Z∼= {S i}i∈Z.
i+ j ∈Z↔ S i ∧S j ' S i+ j.
So Z-grading ↔ ‘sphere-grading.’
Sign conventions come from

τ : S i ∧S j → S j ∧S i

which has degree (−1)i j.

Justin Noel UniBonn, MPIM

π?HA

Why spheres?

They are small, so wedge axiom holds:

E i(
∨
j∈J

X j)∼=
⊕
j∈J

E i(X j).

The existence of inverses gives suspension isomorphisms:

E i(ΣX)∼= E i(S1 ∧ X)
∼= [S i,E∧S1 ∧ X]
∼= [S i ∧S−1,E∧S1 ∧ X ∧S−1]
∼= [S i−1,E∧ X]
∼= E i−1(X).

Justin Noel UniBonn, MPIM

π?HA

Why spheres?

They are small, so wedge axiom holds:

E i(
∨
j∈J

X j)∼=
⊕
j∈J

E i(X j).

The existence of inverses gives suspension isomorphisms:

E i(ΣX)∼= E i(S1 ∧ X)
∼= [S i,E∧S1 ∧ X]
∼= [S i ∧S−1,E∧S1 ∧ X ∧S−1]
∼= [S i−1,E∧ X]
∼= E i−1(X).

Justin Noel UniBonn, MPIM

π?HA

Why spheres?

They are small, so wedge axiom holds:

E i(
∨
j∈J

X j)∼=
⊕
j∈J

E i(X j).

The existence of inverses gives suspension isomorphisms:

E i(ΣX)∼= E i(S1 ∧ X)

∼= [S i,E∧S1 ∧ X]
∼= [S i ∧S−1,E∧S1 ∧ X ∧S−1]
∼= [S i−1,E∧ X]
∼= E i−1(X).

Justin Noel UniBonn, MPIM

π?HA

Why spheres?

They are small, so wedge axiom holds:

E i(
∨
j∈J

X j)∼=
⊕
j∈J

E i(X j).

The existence of inverses gives suspension isomorphisms:

E i(ΣX)∼= E i(S1 ∧ X)
∼= [S i,E∧S1 ∧ X]

∼= [S i ∧S−1,E∧S1 ∧ X ∧S−1]
∼= [S i−1,E∧ X]
∼= E i−1(X).

Justin Noel UniBonn, MPIM

π?HA

Why spheres?

They are small, so wedge axiom holds:

E i(
∨
j∈J

X j)∼=
⊕
j∈J

E i(X j).

The existence of inverses gives suspension isomorphisms:

E i(ΣX)∼= E i(S1 ∧ X)
∼= [S i,E∧S1 ∧ X]
∼= [S i ∧S−1,E∧S1 ∧ X ∧S−1]

∼= [S i−1,E∧ X]
∼= E i−1(X).

Justin Noel UniBonn, MPIM

π?HA

Why spheres?

They are small, so wedge axiom holds:

E i(
∨
j∈J

X j)∼=
⊕
j∈J

E i(X j).

The existence of inverses gives suspension isomorphisms:

E i(ΣX)∼= E i(S1 ∧ X)
∼= [S i,E∧S1 ∧ X]
∼= [S i ∧S−1,E∧S1 ∧ X ∧S−1]
∼= [S i−1,E∧ X]

∼= E i−1(X).

Justin Noel UniBonn, MPIM

π?HA

Why spheres?

They are small, so wedge axiom holds:

E i(
∨
j∈J

X j)∼=
⊕
j∈J

E i(X j).

The existence of inverses gives suspension isomorphisms:

E i(ΣX)∼= E i(S1 ∧ X)
∼= [S i,E∧S1 ∧ X]
∼= [S i ∧S−1,E∧S1 ∧ X ∧S−1]
∼= [S i−1,E∧ X]
∼= E i−1(X).

Justin Noel UniBonn, MPIM

π?HA

Requirements for indices

1 Wedge axiom

=⇒ Indexing objects are ‘small’ (dualizable).

2 Suspension axiom =⇒ Indexing objects are invertible.

3 The (abelian) group of such objects is called the Picard group.

Justin Noel UniBonn, MPIM

π?HA

Requirements for indices

1 Wedge axiom =⇒

Indexing objects are ‘small’ (dualizable).

2 Suspension axiom =⇒ Indexing objects are invertible.

3 The (abelian) group of such objects is called the Picard group.

Justin Noel UniBonn, MPIM

π?HA

Requirements for indices

1 Wedge axiom =⇒ Indexing objects are ‘small’ (dualizable).

2 Suspension axiom =⇒ Indexing objects are invertible.

3 The (abelian) group of such objects is called the Picard group.

Justin Noel UniBonn, MPIM

π?HA

Requirements for indices

1 Wedge axiom =⇒ Indexing objects are ‘small’ (dualizable).
2 Suspension axiom

=⇒ Indexing objects are invertible.
3 The (abelian) group of such objects is called the Picard group.

Justin Noel UniBonn, MPIM

π?HA

Requirements for indices

1 Wedge axiom =⇒ Indexing objects are ‘small’ (dualizable).
2 Suspension axiom =⇒

Indexing objects are invertible.
3 The (abelian) group of such objects is called the Picard group.

Justin Noel UniBonn, MPIM

π?HA

Requirements for indices

1 Wedge axiom =⇒ Indexing objects are ‘small’ (dualizable).
2 Suspension axiom =⇒ Indexing objects are invertible.

3 The (abelian) group of such objects is called the Picard group.

Justin Noel UniBonn, MPIM

π?HA

Requirements for indices

1 Wedge axiom =⇒ Indexing objects are ‘small’ (dualizable).
2 Suspension axiom =⇒ Indexing objects are invertible.
3 The (abelian) group of such objects is called the Picard group.

Justin Noel UniBonn, MPIM

π?HA

Päuschen

Justin Noel UniBonn, MPIM

π?HA

Can define Picard group, Pic(C) for any symmetric monoidal
category C (dualizable, w/ inverses).

Pic(S)∼=Z, so nothing new here.

Want ‘more spheres.’

Justin Noel UniBonn, MPIM

π?HA

Can define Picard group, Pic(C) for any symmetric monoidal
category C (dualizable, w/ inverses).
Pic(S)∼=Z,

so nothing new here.
Want ‘more spheres.’

Justin Noel UniBonn, MPIM

π?HA

Can define Picard group, Pic(C) for any symmetric monoidal
category C (dualizable, w/ inverses).
Pic(S)∼=Z, so nothing new here.

Want ‘more spheres.’

Justin Noel UniBonn, MPIM

π?HA

Can define Picard group, Pic(C) for any symmetric monoidal
category C (dualizable, w/ inverses).
Pic(S)∼=Z, so nothing new here.
Want ‘more spheres.’

Justin Noel UniBonn, MPIM

π?HA

Representation spheres

Let G be a finite group.

Take an orthogonal G representation V =Rn	G.
Here is a picture of the unit disc of a non-trivial representation
of C5.

Justin Noel UniBonn, MPIM

π?HA

Representation spheres

Let G be a finite group.
Take an orthogonal G representation V =Rn	G.

Here is a picture of the unit disc of a non-trivial representation
of C5.

Justin Noel UniBonn, MPIM

π?HA

Representation spheres

Let G be a finite group.
Take an orthogonal G representation V =Rn	G.
Here is a picture of the unit disc of a non-trivial representation
of C5.

Justin Noel UniBonn, MPIM

π?HA

Representation spheres

Let G be a finite group.
Take an orthogonal G representation V =Rn	G.
Here is a picture of the unit disc of a non-trivial representation
of C5.

Justin Noel UniBonn, MPIM

π?HA

Representation spheres

Let G be a finite group.
Take an orthogonal G representation V =Rn	G.
Here is a picture of the unit disc of a non-trivial representation
of C5.

Justin Noel UniBonn, MPIM

π?HA

Representation spheres

Let G be a finite group.
Take an orthogonal G representation V =Rn	G.
Here is a picture of the unit disc of a non-trivial representation
of C5.

Justin Noel UniBonn, MPIM

π?HA

Representation spheres

Let G be a finite group.
Take an orthogonal G representation V =Rn	G.
Here is a picture of the unit disc of a non-trivial representation
of C5.

Justin Noel UniBonn, MPIM

π?HA

Representation spheres

Let G be a finite group.
Take an orthogonal G representation V =Rn	G.
Here is a picture of the unit disc of a non-trivial representation
of C5.

Justin Noel UniBonn, MPIM

π?HA

Representation spheres

Let G be a finite group.
Take an orthogonal G representation V =Rn	G.
Here is a picture of the unit disc of a non-trivial representation
of C5.

Justin Noel UniBonn, MPIM

π?HA

G-CW structure

To construct SV , collapse the boundary, S(V), of the unit disc
in V to a point.

We will need a CW-decomposition on SV .
I.e. a CW-decomposition such that G takes cells to cells while
never mapping a cell to itself in a non-trivial way.
E.g., the color slices above.

Justin Noel UniBonn, MPIM

π?HA

G-CW structure

To construct SV , collapse the boundary, S(V), of the unit disc
in V to a point.

We will need a CW-decomposition on SV .
I.e. a CW-decomposition such that G takes cells to cells while
never mapping a cell to itself in a non-trivial way.
E.g., the color slices above.

Justin Noel UniBonn, MPIM

π?HA

G-CW structure

To construct SV , collapse the boundary, S(V), of the unit disc
in V to a point.

We will need a CW-decomposition on SV .
I.e. a CW-decomposition such that G takes cells to cells while
never mapping a cell to itself in a non-trivial way.
E.g., the color slices above.

Justin Noel UniBonn, MPIM

π?HA

G-CW structure

To construct SV , collapse the boundary, S(V), of the unit disc
in V to a point.

We will need a CW-decomposition on SV .
I.e. a CW-decomposition such that G takes cells to cells while
never mapping a cell to itself in a non-trivial way.
E.g., the color slices above.

Justin Noel UniBonn, MPIM

π?HA

G-CW structure

To construct SV , collapse the boundary, S(V), of the unit disc
in V to a point.

We will need a CW-decomposition on SV .

I.e. a CW-decomposition such that G takes cells to cells while
never mapping a cell to itself in a non-trivial way.
E.g., the color slices above.

Justin Noel UniBonn, MPIM

π?HA

G-CW structure

To construct SV , collapse the boundary, S(V), of the unit disc
in V to a point.

We will need a CW-decomposition on SV .
I.e. a CW-decomposition such that G takes cells to cells while
never mapping a cell to itself in a non-trivial way.

E.g., the color slices above.

Justin Noel UniBonn, MPIM

π?HA

G-CW structure

To construct SV , collapse the boundary, S(V), of the unit disc
in V to a point.

We will need a CW-decomposition on SV .
I.e. a CW-decomposition such that G takes cells to cells while
never mapping a cell to itself in a non-trivial way.
E.g., the color slices above.

Justin Noel UniBonn, MPIM

π?HA

RO(G) vs. Pic(SG)

Construction gives a morphism RO(G)→Pic(SG).

Factors as
RO(G)� JO(G) ,→Pic(SG).

JO(G) := RO(G)/(∼).
V ∼W ⇔ SV ' SW .

Let us find a toy case where we can compute groups indexed
over Pic(SG).

Justin Noel UniBonn, MPIM

π?HA

RO(G) vs. Pic(SG)

Construction gives a morphism RO(G)→Pic(SG).
Factors as

RO(G)� JO(G) ,→Pic(SG).

JO(G) := RO(G)/(∼).
V ∼W ⇔ SV ' SW .

Let us find a toy case where we can compute groups indexed
over Pic(SG).

Justin Noel UniBonn, MPIM

π?HA

RO(G) vs. Pic(SG)

Construction gives a morphism RO(G)→Pic(SG).
Factors as

RO(G)� JO(G) ,→Pic(SG).

JO(G) := RO(G)/(∼).

V ∼W ⇔ SV ' SW .

Let us find a toy case where we can compute groups indexed
over Pic(SG).

Justin Noel UniBonn, MPIM

π?HA

RO(G) vs. Pic(SG)

Construction gives a morphism RO(G)→Pic(SG).
Factors as

RO(G)� JO(G) ,→Pic(SG).

JO(G) := RO(G)/(∼).
V ∼W ⇔ SV ' SW .

Let us find a toy case where we can compute groups indexed
over Pic(SG).

Justin Noel UniBonn, MPIM

π?HA

RO(G) vs. Pic(SG)

Construction gives a morphism RO(G)→Pic(SG).
Factors as

RO(G)� JO(G) ,→Pic(SG).

JO(G) := RO(G)/(∼).
V ∼W ⇔ SV ' SW .

Let us find a toy case where we can compute groups indexed
over Pic(SG).

Justin Noel UniBonn, MPIM

π?HA

Known results

Theorem (tom Dieck-Petrie)

Rank JO(G)=Rank Pic(SG)⇐⇒G is nilpotent.

Theorem (Kawakubo)

JO(G)∼=Pic(SG)⇐⇒G = Cn or D2·2n .

Justin Noel UniBonn, MPIM

π?HA

Known results

Theorem (tom Dieck-Petrie)

Rank JO(G)=Rank Pic(SG)⇐⇒G is nilpotent.

Theorem (Kawakubo)

JO(G)∼=Pic(SG)⇐⇒G = Cn or D2·2n .

Justin Noel UniBonn, MPIM

π?HA

Pic(SCn)

Theorem (Kawakubo)

JO(SCn)∼=Pic(SCn)∼=
⊕
d|n

(
Z⊕ (Z/dZ×/〈±1〉)) .

Torsion free summands generated by a rotation of order d.
Torsion summand generated by differences of such
representations.

Justin Noel UniBonn, MPIM

π?HA

Pic(SCn)

Theorem (Kawakubo)

JO(SCn)∼=Pic(SCn)∼=
⊕
d|n

(
Z⊕ (Z/dZ×/〈±1〉)) .

Torsion free summands generated by a rotation of order d.

Torsion summand generated by differences of such
representations.

Justin Noel UniBonn, MPIM

π?HA

Pic(SCn)

Theorem (Kawakubo)

JO(SCn)∼=Pic(SCn)∼=
⊕
d|n

(
Z⊕ (Z/dZ×/〈±1〉)) .

Torsion free summands generated by a rotation of order d.
Torsion summand generated by differences of such
representations.

Justin Noel UniBonn, MPIM

π?HA

Päuschen

Justin Noel UniBonn, MPIM

π?HA

Let’s compute the Pic(SG)-graded homotopy of something.

HM

?!

Essentially need to compute the equivariant homology and
cohomology of these invertible objects (e.g., representation
spheres).
How do we do this?
What should M be equivariantly?

Justin Noel UniBonn, MPIM

π?HA

Let’s compute the Pic(SG)-graded homotopy of something.
HM?

!
Essentially need to compute the equivariant homology and
cohomology of these invertible objects (e.g., representation
spheres).
How do we do this?
What should M be equivariantly?

Justin Noel UniBonn, MPIM

π?HA

Let’s compute the Pic(SG)-graded homotopy of something.
HM?!

Essentially need to compute the equivariant homology and
cohomology of these invertible objects (e.g., representation
spheres).
How do we do this?
What should M be equivariantly?

Justin Noel UniBonn, MPIM

π?HA

Let’s compute the Pic(SG)-graded homotopy of something.
HM?!
Essentially need to compute the equivariant homology and
cohomology of these invertible objects (e.g., representation
spheres).

How do we do this?
What should M be equivariantly?

Justin Noel UniBonn, MPIM

π?HA

Let’s compute the Pic(SG)-graded homotopy of something.
HM?!
Essentially need to compute the equivariant homology and
cohomology of these invertible objects (e.g., representation
spheres).
How do we do this?

What should M be equivariantly?

Justin Noel UniBonn, MPIM

π?HA

Let’s compute the Pic(SG)-graded homotopy of something.
HM?!
Essentially need to compute the equivariant homology and
cohomology of these invertible objects (e.g., representation
spheres).
How do we do this?
What should M be equivariantly?

Justin Noel UniBonn, MPIM

π?HA

Reminder: Cellular homology

Given a CW-complex X let

Ci(X) :=Z{i-cells of X },

C̃0(X) := ker(C0(X)→ C0(∗)) .

H∗(X)∼= H∗
[
· · ·Ci+1(X) ∂−→ Ci(X) ∂−→ Ci−1(X) · · · ∂−→ C̃0(X)

]
.

H∗(X) is calculated by taking the dual of this complex and
then taking cohomology.

Justin Noel UniBonn, MPIM

π?HA

Reminder: Cellular homology

Given a CW-complex X let

Ci(X) :=Z{i-cells of X },

C̃0(X) := ker(C0(X)→ C0(∗)) .

H∗(X)∼= H∗
[
· · ·Ci+1(X) ∂−→ Ci(X) ∂−→ Ci−1(X) · · · ∂−→ C̃0(X)

]
.

H∗(X) is calculated by taking the dual of this complex and
then taking cohomology.

Justin Noel UniBonn, MPIM

π?HA

Reminder: Cellular homology

Given a CW-complex X let

Ci(X) :=Z{i-cells of X },

C̃0(X) := ker(C0(X)→ C0(∗)) .

H∗(X)∼= H∗
[
· · ·Ci+1(X) ∂−→ Ci(X) ∂−→ Ci−1(X) · · · ∂−→ C̃0(X)

]
.

H∗(X) is calculated by taking the dual of this complex and
then taking cohomology.

Justin Noel UniBonn, MPIM

π?HA

Reminder: Cellular homology

Given a CW-complex X let

Ci(X) :=Z{i-cells of X },

C̃0(X) := ker(C0(X)→ C0(∗)) .

H∗(X)∼= H∗
[
· · ·Ci+1(X) ∂−→ Ci(X) ∂−→ Ci−1(X) · · · ∂−→ C̃0(X)

]
.

H∗(X) is calculated by taking the dual of this complex and
then taking cohomology.

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in Z

Given a G-CW-complex X let

Ci(X) :=Z{i-cells of X }

	G.

For a subgroup K ÉG, let CK
i (X)⊂ Ci(X) be the subgroup of

K-invariant chains.
HK∗ (X)∼= H∗

[
· · ·CK

i+1(X) ∂−→ CK
i (X) ∂−→ CK

i−1(X) · · · ∂−→ C̃K
0 (X)

]
.

When K is the trivial subgroup: HK∗ (X)∼= H∗(X).
For cohomology first take the invariants on the cochains.

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in Z

Given a G-CW-complex X let

Ci(X) :=Z{i-cells of X }	G.

For a subgroup K ÉG, let CK
i (X)⊂ Ci(X) be the subgroup of

K-invariant chains.
HK∗ (X)∼= H∗

[
· · ·CK

i+1(X) ∂−→ CK
i (X) ∂−→ CK

i−1(X) · · · ∂−→ C̃K
0 (X)

]
.

When K is the trivial subgroup: HK∗ (X)∼= H∗(X).
For cohomology first take the invariants on the cochains.

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in Z

Given a G-CW-complex X let

Ci(X) :=Z{i-cells of X }	G.

For a subgroup K ÉG, let CK
i (X)⊂ Ci(X) be the subgroup of

K-invariant chains.

HK∗ (X)∼= H∗
[
· · ·CK

i+1(X) ∂−→ CK
i (X) ∂−→ CK

i−1(X) · · · ∂−→ C̃K
0 (X)

]
.

When K is the trivial subgroup: HK∗ (X)∼= H∗(X).
For cohomology first take the invariants on the cochains.

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in Z

Given a G-CW-complex X let

Ci(X) :=Z{i-cells of X }	G.

For a subgroup K ÉG, let CK
i (X)⊂ Ci(X) be the subgroup of

K-invariant chains.
HK∗ (X)∼= H∗

[
· · ·CK

i+1(X) ∂−→ CK
i (X) ∂−→ CK

i−1(X) · · · ∂−→ C̃K
0 (X)

]
.

When K is the trivial subgroup: HK∗ (X)∼= H∗(X).
For cohomology first take the invariants on the cochains.

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in Z

Given a G-CW-complex X let

Ci(X) :=Z{i-cells of X }	G.

For a subgroup K ÉG, let CK
i (X)⊂ Ci(X) be the subgroup of

K-invariant chains.
HK∗ (X)∼= H∗

[
· · ·CK

i+1(X) ∂−→ CK
i (X) ∂−→ CK

i−1(X) · · · ∂−→ C̃K
0 (X)

]
.

When K is the trivial subgroup: HK∗ (X)∼= H∗(X).

For cohomology first take the invariants on the cochains.

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in Z

Given a G-CW-complex X let

Ci(X) :=Z{i-cells of X }	G.

For a subgroup K ÉG, let CK
i (X)⊂ Ci(X) be the subgroup of

K-invariant chains.
HK∗ (X)∼= H∗

[
· · ·CK

i+1(X) ∂−→ CK
i (X) ∂−→ CK

i−1(X) · · · ∂−→ C̃K
0 (X)

]
.

When K is the trivial subgroup: HK∗ (X)∼= H∗(X).
For cohomology first take the invariants on the cochains.

Justin Noel UniBonn, MPIM

π?HA

Mackey functors

Other coefficient systems?

Want H(−)
i (X) to also be an acceptable coefficient system.

These functors assign an abelian group to each subgroup of G
and have induction, restriction, and action maps, satisfying
some axioms.
Such functors should form an abelian category.

Justin Noel UniBonn, MPIM

π?HA

Mackey functors

Other coefficient systems?
Want H(−)

i (X) to also be an acceptable coefficient system.

These functors assign an abelian group to each subgroup of G
and have induction, restriction, and action maps, satisfying
some axioms.
Such functors should form an abelian category.

Justin Noel UniBonn, MPIM

π?HA

Mackey functors

Other coefficient systems?
Want H(−)

i (X) to also be an acceptable coefficient system.
These functors assign an abelian group to each subgroup of G
and have induction, restriction, and action maps, satisfying
some axioms.

Such functors should form an abelian category.

Justin Noel UniBonn, MPIM

π?HA

Mackey functors

Other coefficient systems?
Want H(−)

i (X) to also be an acceptable coefficient system.
These functors assign an abelian group to each subgroup of G
and have induction, restriction, and action maps, satisfying
some axioms.
Such functors should form an abelian category.

Justin Noel UniBonn, MPIM

π?HA

Definition: Mackey functors

Definition
O(G) is the category of finite G-sets and G-morphisms.

Definition
A Mackey functor is a pair

M∗ : O(G)→AbGroup
M∗ : O(G)op →AbGroup

such that

M∗(X)= M∗(X).
M∗(X

∐
Y)= M∗(X)×M∗(Y).

M satisfies a double coset formula.

Justin Noel UniBonn, MPIM

π?HA

Definition: Mackey functors

Definition
O(G) is the category of finite G-sets and G-morphisms.

Definition
A Mackey functor is a pair

M∗ : O(G)→AbGroup
M∗ : O(G)op →AbGroup

such that

M∗(X)= M∗(X).
M∗(X

∐
Y)= M∗(X)×M∗(Y).

M satisfies a double coset formula.

Justin Noel UniBonn, MPIM

π?HA

Definition: Mackey functors

Definition
O(G) is the category of finite G-sets and G-morphisms.

Definition
A Mackey functor is a pair

M∗ : O(G)→AbGroup
M∗ : O(G)op →AbGroup

such that
M∗(X)= M∗(X).

M∗(X
∐

Y)= M∗(X)×M∗(Y).
M satisfies a double coset formula.

Justin Noel UniBonn, MPIM

π?HA

Definition: Mackey functors

Definition
O(G) is the category of finite G-sets and G-morphisms.

Definition
A Mackey functor is a pair

M∗ : O(G)→AbGroup
M∗ : O(G)op →AbGroup

such that
M∗(X)= M∗(X).
M∗(X

∐
Y)= M∗(X)×M∗(Y).

M satisfies a double coset formula.

Justin Noel UniBonn, MPIM

π?HA

Definition: Mackey functors

Definition
O(G) is the category of finite G-sets and G-morphisms.

Definition
A Mackey functor is a pair

M∗ : O(G)→AbGroup
M∗ : O(G)op →AbGroup

such that
M∗(X)= M∗(X).
M∗(X

∐
Y)= M∗(X)×M∗(Y).

M satisfies a double coset formula.

Justin Noel UniBonn, MPIM

π?HA

Definition explained

Alternatively M assigns to each H ÉG an abelian group
M(G/H).

M(G/H) has action of WG H = NG H/H.

From H É K we obtain a map π : G/H →G/K inducing a
restriction maps

M(G/H)
M∗π=ResK

H−−−−−−−−→ M(G/K)

and a transfer map

M(G/K)
M∗π=IndK

H−−−−−−−−→ M(G/H).

Justin Noel UniBonn, MPIM

π?HA

Definition explained

Alternatively M assigns to each H ÉG an abelian group
M(G/H).
M(G/H) has action of WG H = NG H/H.

From H É K we obtain a map π : G/H →G/K inducing a
restriction maps

M(G/H)
M∗π=ResK

H−−−−−−−−→ M(G/K)

and a transfer map

M(G/K)
M∗π=IndK

H−−−−−−−−→ M(G/H).

Justin Noel UniBonn, MPIM

π?HA

Definition explained

Alternatively M assigns to each H ÉG an abelian group
M(G/H).
M(G/H) has action of WG H = NG H/H.
From H É K

we obtain a map π : G/H →G/K inducing a
restriction maps

M(G/H)
M∗π=ResK

H−−−−−−−−→ M(G/K)

and a transfer map

M(G/K)
M∗π=IndK

H−−−−−−−−→ M(G/H).

Justin Noel UniBonn, MPIM

π?HA

Definition explained

Alternatively M assigns to each H ÉG an abelian group
M(G/H).
M(G/H) has action of WG H = NG H/H.
From H É K we obtain a map π : G/H →G/K inducing a
restriction maps

M(G/H)
M∗π=ResK

H−−−−−−−−→ M(G/K)

and a transfer map

M(G/K)
M∗π=IndK

H−−−−−−−−→ M(G/H).

Justin Noel UniBonn, MPIM

π?HA

Definition explained

Alternatively M assigns to each H ÉG an abelian group
M(G/H).
M(G/H) has action of WG H = NG H/H.
From H É K we obtain a map π : G/H →G/K inducing a
restriction maps

M(G/H)
M∗π=ResK

H−−−−−−−−→ M(G/K)

and a transfer map

M(G/K)
M∗π=IndK

H−−−−−−−−→ M(G/H).

Justin Noel UniBonn, MPIM

π?HA

Definition explained

Alternatively M assigns to each H ÉG an abelian group
M(G/H).
M(G/H) has action of WG H = NG H/H.
From H É K we obtain a map π : G/H →G/K inducing a
restriction maps

M(G/H)
M∗π=ResK

H−−−−−−−−→ M(G/K)

and a transfer map

M(G/K)
M∗π=IndK

H−−−−−−−−→ M(G/H).

Justin Noel UniBonn, MPIM

π?HA

Definition explained

Alternatively M assigns to each H ÉG an abelian group
M(G/H).
M(G/H) has action of WG H = NG H/H.
From H É K we obtain a map π : G/H →G/K inducing a
restriction maps

M(G/H)
M∗π=ResK

H−−−−−−−−→ M(G/K)

and a transfer map

M(G/K)
M∗π=IndK

H−−−−−−−−→ M(G/H).

Justin Noel UniBonn, MPIM

π?HA

Example: G-Modules

Given a G-module M

we can construct a functor M(−):

M(G/H)=Mod G(Z[G/H], M)∼= MH

.

For K É H,

M(G/H)= MH ResH
K−−−→ M(G/K)= MK

induced by quotient map

q :Z[G/K]→Z[G/H].

We also have a transfer

M(G/K)= MK IndH
K−−−→ M(G/H)= MH

induced by summing over the fibers of q.

Justin Noel UniBonn, MPIM

π?HA

Example: G-Modules

Given a G-module M we can construct a functor M(−):

M(G/H)=Mod G(Z[G/H], M)∼= MH

.
For K É H,

M(G/H)= MH ResH
K−−−→ M(G/K)= MK

induced by quotient map

q :Z[G/K]→Z[G/H].

We also have a transfer

M(G/K)= MK IndH
K−−−→ M(G/H)= MH

induced by summing over the fibers of q.

Justin Noel UniBonn, MPIM

π?HA

Example: G-Modules

Given a G-module M we can construct a functor M(−):
M(G/H)=Mod G(Z[G/H], M)

∼= MH

.

For K É H,

M(G/H)= MH ResH
K−−−→ M(G/K)= MK

induced by quotient map

q :Z[G/K]→Z[G/H].

We also have a transfer

M(G/K)= MK IndH
K−−−→ M(G/H)= MH

induced by summing over the fibers of q.

Justin Noel UniBonn, MPIM

π?HA

Example: G-Modules

Given a G-module M we can construct a functor M(−):
M(G/H)=Mod G(Z[G/H], M)∼= MH .

For K É H,

M(G/H)= MH ResH
K−−−→ M(G/K)= MK

induced by quotient map

q :Z[G/K]→Z[G/H].

We also have a transfer

M(G/K)= MK IndH
K−−−→ M(G/H)= MH

induced by summing over the fibers of q.

Justin Noel UniBonn, MPIM

π?HA

Example: G-Modules

Given a G-module M we can construct a functor M(−):
M(G/H)=Mod G(Z[G/H], M)∼= MH .
For K É H,

M(G/H)= MH ResH
K−−−→ M(G/K)= MK

induced by quotient map

q :Z[G/K]→Z[G/H].

We also have a transfer

M(G/K)= MK IndH
K−−−→ M(G/H)= MH

induced by summing over the fibers of q.

Justin Noel UniBonn, MPIM

π?HA

Example: G-Modules

Given a G-module M we can construct a functor M(−):
M(G/H)=Mod G(Z[G/H], M)∼= MH .
For K É H,

M(G/H)= MH ResH
K−−−→ M(G/K)= MK

induced by quotient map

q :Z[G/K]→Z[G/H].

We also have a transfer

M(G/K)= MK IndH
K−−−→ M(G/H)= MH

induced by summing over the fibers of q.

Justin Noel UniBonn, MPIM

π?HA

Example: G-Modules

Given a G-module M we can construct a functor M(−):
M(G/H)=Mod G(Z[G/H], M)∼= MH .
For K É H,

M(G/H)= MH ResH
K−−−→ M(G/K)= MK

induced by quotient map

q :Z[G/K]→Z[G/H].

We also have a transfer

M(G/K)= MK IndH
K−−−→ M(G/H)= MH

induced by summing over the fibers of q.

Justin Noel UniBonn, MPIM

π?HA

Example: G-Modules

Given a G-module M we can construct a functor M(−):
M(G/H)=Mod G(Z[G/H], M)∼= MH .
For K É H,

M(G/H)= MH ResH
K−−−→ M(G/K)= MK

induced by quotient map

q :Z[G/K]→Z[G/H].

We also have a transfer

M(G/K)= MK IndH
K−−−→ M(G/H)= MH

induced by summing over the fibers of q.

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

Definition
Let A(G) be the Grothendieck group of finite G-sets up to iso.

[X
∐

Y]= [X]+ [Y]

[X ×Y]= [X][Y]

G/H 7→ A(H) is a Mackey functor.
Restriction of G-action to H-action defines ResG

H .

Crossing with G/H defines IndG
H .

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

Definition
Let A(G) be the Grothendieck group of finite G-sets up to iso.

[X
∐

Y]= [X]+ [Y]

[X ×Y]= [X][Y]

G/H 7→ A(H) is a Mackey functor.
Restriction of G-action to H-action defines ResG

H .

Crossing with G/H defines IndG
H .

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

Definition
Let A(G) be the Grothendieck group of finite G-sets up to iso.

[X
∐

Y]= [X]+ [Y]

[X ×Y]= [X][Y]

G/H 7→ A(H) is a Mackey functor.
Restriction of G-action to H-action defines ResG

H .

Crossing with G/H defines IndG
H .

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

Definition
Let A(G) be the Grothendieck group of finite G-sets up to iso.

[X
∐

Y]= [X]+ [Y]

[X ×Y]= [X][Y]

G/H 7→ A(H) is a Mackey functor.

Restriction of G-action to H-action defines ResG
H .

Crossing with G/H defines IndG
H .

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

Definition
Let A(G) be the Grothendieck group of finite G-sets up to iso.

[X
∐

Y]= [X]+ [Y]

[X ×Y]= [X][Y]

G/H 7→ A(H) is a Mackey functor.
Restriction of G-action to H-action defines ResG

H .

Crossing with G/H defines IndG
H .

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

Definition
Let A(G) be the Grothendieck group of finite G-sets up to iso.

[X
∐

Y]= [X]+ [Y]

[X ×Y]= [X][Y]

G/H 7→ A(H) is a Mackey functor.
Restriction of G-action to H-action defines ResG

H .

Crossing with G/H defines IndG
H .

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note

X =∐
i G/Hi (Decomposition into orbits).

Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9] [C9/C9] [C9/C3] [C9]
[C9/C3] [C9/C3] 3[C9/C3] 3[C9]

[C9] [C9] 3[C9] ?9[C9]
C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note
X =∐

i G/Hi (Decomposition into orbits).

Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9] [C9/C9] [C9/C3] [C9]
[C9/C3] [C9/C3] 3[C9/C3] 3[C9]

[C9] [C9] 3[C9] ?9[C9]
C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note
X =∐

i G/Hi (Decomposition into orbits).
Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9] [C9/C9] [C9/C3] [C9]
[C9/C3] [C9/C3] 3[C9/C3] 3[C9]

[C9] [C9] 3[C9] ?9[C9]
C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note
X =∐

i G/Hi (Decomposition into orbits).
Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9] [C9/C9] [C9/C3] [C9]
[C9/C3] [C9/C3] 3[C9/C3] 3[C9]

[C9] [C9] 3[C9] ?9[C9]
C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note
X =∐

i G/Hi (Decomposition into orbits).
Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9] [C9/C9] [C9/C3] [C9]
[C9/C3] [C9/C3] 3[C9/C3] 3[C9]

[C9] [C9] 3[C9] ?9[C9]
C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note
X =∐

i G/Hi (Decomposition into orbits).
Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9]

[C9/C9] [C9/C3] [C9]

[C9/C3]

[C9/C3] 3[C9/C3] 3[C9]

[C9]

[C9] 3[C9] ?9[C9]
C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note
X =∐

i G/Hi (Decomposition into orbits).
Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9] [C9/C9] [C9/C3] [C9]
[C9/C3] [C9/C3]

3[C9/C3] 3[C9]

[C9] [C9]

3[C9] ?9[C9]
C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note
X =∐

i G/Hi (Decomposition into orbits).
Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9] [C9/C9] [C9/C3] [C9]
[C9/C3] [C9/C3]

3[C9/C3] 3[C9]

[C9] [C9]

3[C9]

?

9[C9]
C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note
X =∐

i G/Hi (Decomposition into orbits).
Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9] [C9/C9] [C9/C3] [C9]
[C9/C3] [C9/C3]

3[C9/C3] 3[C9]

[C9] [C9]

3[C9]

?

9[C9]

C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note
X =∐

i G/Hi (Decomposition into orbits).
Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9] [C9/C9] [C9/C3] [C9]
[C9/C3] [C9/C3]

3[C9/C3] 3[C9]

[C9] [C9]

3[C9] ?

9[C9]
C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

A(C9)

Note
X =∐

i G/Hi (Decomposition into orbits).
Rank A(G) = # Conjugacy classes of subgroups of G.

Example (Multiplication Table)

A(C9)=Z{[C9/C9], [C9/C3], [C9]}

[C9/C9] [C9/C3] [C9]
[C9/C9] [C9/C9] [C9/C3] [C9]
[C9/C3] [C9/C3] 3[C9/C3] 3[C9]

[C9] [C9] 3[C9]

?

9[C9]

C9 ×C9 is a free C9 set with 81 elements.

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

A(H) is a ring such that A is a commutative Green functor.

ResH
K is a commutative ring map.

IndH
K (a) ·b = IndH

K (a ·ResH
K (b)).

Every Mackey functor is an A-module.
Analogue of Z equivariantly.

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

A(H) is a ring such that A is a commutative Green functor.
ResH

K is a commutative ring map.

IndH
K (a) ·b = IndH

K (a ·ResH
K (b)).

Every Mackey functor is an A-module.
Analogue of Z equivariantly.

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

A(H) is a ring such that A is a commutative Green functor.
ResH

K is a commutative ring map.
IndH

K (a) ·b = IndH
K (a ·ResH

K (b)).

Every Mackey functor is an A-module.
Analogue of Z equivariantly.

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

A(H) is a ring such that A is a commutative Green functor.
ResH

K is a commutative ring map.
IndH

K (a) ·b = IndH
K (a ·ResH

K (b)).
Every Mackey functor is an A-module.

Analogue of Z equivariantly.

Justin Noel UniBonn, MPIM

π?HA

Example: Burnside ring

A(H) is a ring such that A is a commutative Green functor.
ResH

K is a commutative ring map.
IndH

K (a) ·b = IndH
K (a ·ResH

K (b)).
Every Mackey functor is an A-module.
Analogue of Z equivariantly.

Justin Noel UniBonn, MPIM

π?HA

Induced Mackey functors

Definition
Given a Mackey functor M

let M⊗G/H be the Mackey functor
defined by

(M⊗G/H)(G/K)= M(G/H×G/K)

Example

A⊗G ∼=Z[G]

Justin Noel UniBonn, MPIM

π?HA

Induced Mackey functors

Definition
Given a Mackey functor M let M⊗G/H be the Mackey functor
defined by

(M⊗G/H)(G/K)= M(G/H×G/K)

Example

A⊗G ∼=Z[G]

Justin Noel UniBonn, MPIM

π?HA

Induced Mackey functors

Definition
Given a Mackey functor M let M⊗G/H be the Mackey functor
defined by

(M⊗G/H)(G/K)= M(G/H×G/K)

Example

A⊗G ∼=Z[G]

Justin Noel UniBonn, MPIM

π?HA

Induced Mackey functors

Definition
Given a Mackey functor M let M⊗G/H be the Mackey functor
defined by

(M⊗G/H)(G/K)= M(G/H×G/K)

Example

A⊗G ∼=Z[G]

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in M

Given a G-CW-complex X let

Ci(X) : M⊗ {i-cells of X }	G.

Chain complex of Mackey functors.

HK
∗ (X)∼= H∗

[
· · ·Ci+1(X)(G/K) ∂−→ Ci(X)(G/K) ∂−→ Ci−1(X)(G/K)

· · · ∂−→ C̃0(X)(G/K)
]

When M =Z (trivial action) then we get previous definition.
For cohomology one takes a dual complex, with IndG

H ↔ResG
H .

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in M

Given a G-CW-complex X let

Ci(X) : M⊗ {i-cells of X }	G.

Chain complex of Mackey functors.

HK
∗ (X)∼= H∗

[
· · ·Ci+1(X)(G/K) ∂−→ Ci(X)(G/K) ∂−→ Ci−1(X)(G/K)

· · · ∂−→ C̃0(X)(G/K)
]

When M =Z (trivial action) then we get previous definition.
For cohomology one takes a dual complex, with IndG

H ↔ResG
H .

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in M

Given a G-CW-complex X let

Ci(X) : M⊗ {i-cells of X }	G.

Chain complex of Mackey functors.

HK
∗ (X)

∼= H∗
[
· · ·Ci+1(X)(G/K) ∂−→ Ci(X)(G/K) ∂−→ Ci−1(X)(G/K)

· · · ∂−→ C̃0(X)(G/K)
]

When M =Z (trivial action) then we get previous definition.
For cohomology one takes a dual complex, with IndG

H ↔ResG
H .

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in M

Given a G-CW-complex X let

Ci(X) : M⊗ {i-cells of X }	G.

Chain complex of Mackey functors.

HK
∗ (X)∼= H∗

[
· · ·Ci+1(X)(G/K) ∂−→ Ci(X)(G/K) ∂−→ Ci−1(X)(G/K)

· · · ∂−→ C̃0(X)(G/K)
]

When M =Z (trivial action) then we get previous definition.
For cohomology one takes a dual complex, with IndG

H ↔ResG
H .

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in M

Given a G-CW-complex X let

Ci(X) : M⊗ {i-cells of X }	G.

Chain complex of Mackey functors.

HK
∗ (X)∼= H∗

[
· · ·Ci+1(X)(G/K) ∂−→ Ci(X)(G/K) ∂−→ Ci−1(X)(G/K)

· · · ∂−→ C̃0(X)(G/K)
]

When M =Z (trivial action) then we get previous definition.

For cohomology one takes a dual complex, with IndG
H ↔ResG

H .

Justin Noel UniBonn, MPIM

π?HA

Bredon homology with coefficients in M

Given a G-CW-complex X let

Ci(X) : M⊗ {i-cells of X }	G.

Chain complex of Mackey functors.

HK
∗ (X)∼= H∗

[
· · ·Ci+1(X)(G/K) ∂−→ Ci(X)(G/K) ∂−→ Ci−1(X)(G/K)

· · · ∂−→ C̃0(X)(G/K)
]

When M =Z (trivial action) then we get previous definition.
For cohomology one takes a dual complex, with IndG

H ↔ResG
H .

Justin Noel UniBonn, MPIM

π?HA

Päuschen

Justin Noel UniBonn, MPIM

π?HA

Method of computating π?HA

Fix a finite group G and determine explicit models for all of
the irreducible real representations of G.

Construct an explicit G-CW decomposition on each irreducible
representation sphere.
Compute HG∗ (SV) and H∗

G(SV).

Assemble the computations to compute HG∗ (SV+W).

Justin Noel UniBonn, MPIM

π?HA

Method of computating π?HA

Fix a finite group G and determine explicit models for all of
the irreducible real representations of G.
Construct an explicit G-CW decomposition on each irreducible
representation sphere.

Compute HG∗ (SV) and H∗
G(SV).

Assemble the computations to compute HG∗ (SV+W).

Justin Noel UniBonn, MPIM

π?HA

Method of computating π?HA

Fix a finite group G and determine explicit models for all of
the irreducible real representations of G.
Construct an explicit G-CW decomposition on each irreducible
representation sphere.
Compute HG∗ (SV) and H∗

G(SV).

Assemble the computations to compute HG∗ (SV+W).

Justin Noel UniBonn, MPIM

π?HA

Method of computating π?HA

Fix a finite group G and determine explicit models for all of
the irreducible real representations of G.
Construct an explicit G-CW decomposition on each irreducible
representation sphere.
Compute HG∗ (SV) and H∗

G(SV).

Assemble the computations to compute HG∗ (SV+W).

Justin Noel UniBonn, MPIM

π?HA

Homology

Consider ρn the rotation of order n (n > 2)

Σ

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Justin Noel UniBonn, MPIM

π?HA

Homology

Consider ρn the rotation of order n (n > 2)

Σ

A ε←−

A⊗Cn
g−1←−−− A⊗Cn

Justin Noel UniBonn, MPIM

π?HA

Homology

Consider ρn the rotation of order n (n > 2)

Σ

A ε←−

A⊗Cn
g−1←−−− A⊗Cn

Justin Noel UniBonn, MPIM

π?HA

Homology

Consider ρn the rotation of order n (n > 2)

Σ

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Justin Noel UniBonn, MPIM

π?HA

He
∗(Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/e:
Z

ε←−Z|Cn| [g]−[1]←−−−−−Z|Cn|

He
0(Sρn)∼= 0 He

1(Sρn)∼= 0 He
2(Sρn)∼=Z

Get H∗(S2) as expected.

Justin Noel UniBonn, MPIM

π?HA

He
∗(Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/e:

Z
ε←−Z|Cn| [g]−[1]←−−−−−Z|Cn|

He
0(Sρn)∼= 0 He

1(Sρn)∼= 0 He
2(Sρn)∼=Z

Get H∗(S2) as expected.

Justin Noel UniBonn, MPIM

π?HA

He
∗(Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/e:
Z

ε←−

Z|Cn|

[g]−[1]←−−−−−

Z|Cn|

He
0(Sρn)∼= 0 He

1(Sρn)∼= 0 He
2(Sρn)∼=Z

Get H∗(S2) as expected.

Justin Noel UniBonn, MPIM

π?HA

He
∗(Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/e:
Z

ε←−Z|Cn| [g]−[1]←−−−−−Z|Cn|

He
0(Sρn)∼= 0 He

1(Sρn)∼= 0 He
2(Sρn)∼=Z

Get H∗(S2) as expected.

Justin Noel UniBonn, MPIM

π?HA

He
∗(Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/e:
Z

ε←−Z|Cn| [g]−[1]←−−−−−Z|Cn|

He
0(Sρn)∼= 0

He
1(Sρn)∼= 0 He

2(Sρn)∼=Z

Get H∗(S2) as expected.

Justin Noel UniBonn, MPIM

π?HA

He
∗(Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/e:
Z

ε←−Z|Cn| [g]−[1]←−−−−−Z|Cn|

He
0(Sρn)∼= 0 He

1(Sρn)∼= 0

He
2(Sρn)∼=Z

Get H∗(S2) as expected.

Justin Noel UniBonn, MPIM

π?HA

He
∗(Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/e:
Z

ε←−Z|Cn| [g]−[1]←−−−−−Z|Cn|

He
0(Sρn)∼= 0 He

1(Sρn)∼= 0 He
2(Sρn)∼=Z

Get H∗(S2) as expected.

Justin Noel UniBonn, MPIM

π?HA

He
∗(Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/e:
Z

ε←−Z|Cn| [g]−[1]←−−−−−Z|Cn|

He
0(Sρn)∼= 0 He

1(Sρn)∼= 0 He
2(Sρn)∼=Z

Get H∗(S2) as expected.

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
IndCn

e←−−−−Z 0←−Z

HCn
0 (Sρn)∼= A(Cn)/[Cn] HCn

1 (Sρn)∼= 0 HCn
2 (Sρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
IndCn

e←−−−−Z 0←−Z

HCn
0 (Sρn)∼= A(Cn)/[Cn] HCn

1 (Sρn)∼= 0 HCn
2 (Sρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/Cn:

A(Cn)

IndCn
e←−−−−

Z

0←−

Z

HCn
0 (Sρn)∼= A(Cn)/[Cn] HCn

1 (Sρn)∼= 0 HCn
2 (Sρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
IndCn

e←−−−−Z 0←−Z

HCn
0 (Sρn)∼= A(Cn)/[Cn] HCn

1 (Sρn)∼= 0 HCn
2 (Sρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
IndCn

e←−−−−Z 0←−Z

HCn
0 (Sρn)∼= A(Cn)/[Cn]

HCn
1 (Sρn)∼= 0 HCn

2 (Sρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
IndCn

e←−−−−Z 0←−Z

HCn
0 (Sρn)∼= A(Cn)/[Cn] HCn

1 (Sρn)∼= 0

HCn
2 (Sρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Sρn; A)

A ε←− A⊗Cn
g−1←−−− A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
IndCn

e←−−−−Z 0←−Z

HCn
0 (Sρn)∼= A(Cn)/[Cn] HCn

1 (Sρn)∼= 0 HCn
2 (Sρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

H∗
Cn

(Sρn; A)

A ∆−→ A⊗Cn
g−1−1−−−−→ A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
ResCn

e−−−−→Z
0−→Z

H0
Cn

(Sρn)∼= Ã(Cn)= ker(A(Cn)
ResCn

e−−−−→Z)

H1
Cn

(Sρn)∼= 0

H2
Cn

(Sρn)∼=Z.

Justin Noel UniBonn, MPIM

π?HA

H∗
Cn

(Sρn; A)

A ∆−→ A⊗Cn
g−1−1−−−−→ A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
ResCn

e−−−−→Z
0−→Z

H0
Cn

(Sρn)∼= Ã(Cn)= ker(A(Cn)
ResCn

e−−−−→Z)

H1
Cn

(Sρn)∼= 0

H2
Cn

(Sρn)∼=Z.

Justin Noel UniBonn, MPIM

π?HA

H∗
Cn

(Sρn; A)

A ∆−→ A⊗Cn
g−1−1−−−−→ A⊗Cn

Evaluate at Cn/Cn:

A(Cn)

ResCn
e−−−−→

Z

0−→

Z

H0
Cn

(Sρn)∼= Ã(Cn)= ker(A(Cn)
ResCn

e−−−−→Z)

H1
Cn

(Sρn)∼= 0

H2
Cn

(Sρn)∼=Z.

Justin Noel UniBonn, MPIM

π?HA

H∗
Cn

(Sρn; A)

A ∆−→ A⊗Cn
g−1−1−−−−→ A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
ResCn

e−−−−→Z
0−→Z

H0
Cn

(Sρn)∼= Ã(Cn)= ker(A(Cn)
ResCn

e−−−−→Z)

H1
Cn

(Sρn)∼= 0

H2
Cn

(Sρn)∼=Z.

Justin Noel UniBonn, MPIM

π?HA

H∗
Cn

(Sρn; A)

A ∆−→ A⊗Cn
g−1−1−−−−→ A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
ResCn

e−−−−→Z
0−→Z

H0
Cn

(Sρn)∼= Ã(Cn)= ker(A(Cn)
ResCn

e−−−−→Z)

H1
Cn

(Sρn)∼= 0

H2
Cn

(Sρn)∼=Z.

Justin Noel UniBonn, MPIM

π?HA

H∗
Cn

(Sρn; A)

A ∆−→ A⊗Cn
g−1−1−−−−→ A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
ResCn

e−−−−→Z
0−→Z

H0
Cn

(Sρn)∼= Ã(Cn)= ker(A(Cn)
ResCn

e−−−−→Z)

H1
Cn

(Sρn)∼= 0

H2
Cn

(Sρn)∼=Z.

Justin Noel UniBonn, MPIM

π?HA

H∗
Cn

(Sρn; A)

A ∆−→ A⊗Cn
g−1−1−−−−→ A⊗Cn

Evaluate at Cn/Cn:

A(Cn)
ResCn

e−−−−→Z
0−→Z

H0
Cn

(Sρn)∼= Ã(Cn)= ker(A(Cn)
ResCn

e−−−−→Z)

H1
Cn

(Sρn)∼= 0

H2
Cn

(Sρn)∼=Z.

Justin Noel UniBonn, MPIM

π?HA

Assembling the computation

Once we know C∗(SV) and C∗(SW) have

H∗(SV+W)∼= H∗(C∗(SW)⊗C∗(SV))

Can filter bicomplex in two ways to get two spectral sequences.
Alternatively these are AHSS’s with coefficients in

E2
s,t = Hs(SV ; Ht(SW)) =⇒ Hs+t(SV+W),

E2
s,t = Hs(SW ; Ht(SV)) =⇒ Hs+t(SV+W).

Justin Noel UniBonn, MPIM

π?HA

Assembling the computation

Once we know C∗(SV) and C∗(SW) have

H∗(SV+W)∼= H∗(C∗(SW)⊗C∗(SV))

Can filter bicomplex in two ways to get two spectral sequences.
Alternatively these are AHSS’s with coefficients in

E2
s,t = Hs(SV ; Ht(SW)) =⇒ Hs+t(SV+W),

E2
s,t = Hs(SW ; Ht(SV)) =⇒ Hs+t(SV+W).

Justin Noel UniBonn, MPIM

π?HA

Assembling the computation

Once we know C∗(SV) and C∗(SW) have

H∗(SV+W)∼= H∗(C∗(SW)⊗C∗(SV))

Can filter bicomplex in two ways to get two spectral sequences.

Alternatively these are AHSS’s with coefficients in

E2
s,t = Hs(SV ; Ht(SW)) =⇒ Hs+t(SV+W),

E2
s,t = Hs(SW ; Ht(SV)) =⇒ Hs+t(SV+W).

Justin Noel UniBonn, MPIM

π?HA

Assembling the computation

Once we know C∗(SV) and C∗(SW) have

H∗(SV+W)∼= H∗(C∗(SW)⊗C∗(SV))

Can filter bicomplex in two ways to get two spectral sequences.
Alternatively these are AHSS’s with coefficients in

E2
s,t = Hs(SV ; Ht(SW)) =⇒ Hs+t(SV+W),

E2
s,t = Hs(SW ; Ht(SV)) =⇒ Hs+t(SV+W).

Justin Noel UniBonn, MPIM

π?HA

Assembling the computation

Once we know C∗(SV) and C∗(SW) have

H∗(SV+W)∼= H∗(C∗(SW)⊗C∗(SV))

Can filter bicomplex in two ways to get two spectral sequences.
Alternatively these are AHSS’s with coefficients in

E2
s,t = Hs(SV ; Ht(SW)) =⇒ Hs+t(SV+W),

E2
s,t = Hs(SW ; Ht(SV)) =⇒ Hs+t(SV+W).

Justin Noel UniBonn, MPIM

π?HA

Assembling the computation

Once we know C∗(SV) and C∗(SW) have

H∗(SV+W)∼= H∗(C∗(SW)⊗C∗(SV))

Can filter bicomplex in two ways to get two spectral sequences.
Alternatively these are AHSS’s with coefficients in

E2
s,t = Hs(SV ; Ht(SW)) =⇒ Hs+t(SV+W),

E2
s,t = Hs(SW ; Ht(SV)) =⇒ Hs+t(SV+W).

Justin Noel UniBonn, MPIM

π?HA

Tricks for computation

1 (Reverse induction) If V is the pullback of a representation of
G/H, then can pullback complex.

2 (Reciprocity) Use the formula

SW ∧ IndG
HS i ∼= IndG

H

(
ResG

H(SW)∧S i
)

to simplify E1.
3 (Functoriality) Use subgroup functoriality to determine the

differentials and multiplicative relations.
4 (Competing computations) Decompose the representation in

different ways.

Justin Noel UniBonn, MPIM

π?HA

Tricks for computation

1 (Reverse induction) If V is the pullback of a representation of
G/H, then can pullback complex.

2 (Reciprocity) Use the formula

SW ∧ IndG
HS i ∼= IndG

H

(
ResG

H(SW)∧S i
)

to simplify E1.

3 (Functoriality) Use subgroup functoriality to determine the
differentials and multiplicative relations.

4 (Competing computations) Decompose the representation in
different ways.

Justin Noel UniBonn, MPIM

π?HA

Tricks for computation

1 (Reverse induction) If V is the pullback of a representation of
G/H, then can pullback complex.

2 (Reciprocity) Use the formula

SW ∧ IndG
HS i ∼= IndG

H

(
ResG

H(SW)∧S i
)

to simplify E1.
3 (Functoriality) Use subgroup functoriality to determine the

differentials and multiplicative relations.

4 (Competing computations) Decompose the representation in
different ways.

Justin Noel UniBonn, MPIM

π?HA

Tricks for computation

1 (Reverse induction) If V is the pullback of a representation of
G/H, then can pullback complex.

2 (Reciprocity) Use the formula

SW ∧ IndG
HS i ∼= IndG

H

(
ResG

H(SW)∧S i
)

to simplify E1.
3 (Functoriality) Use subgroup functoriality to determine the

differentials and multiplicative relations.
4 (Competing computations) Decompose the representation in

different ways.

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (S2ρn)

M ε←− M⊗Cn
g−1←−−− M⊗Cn

Evaluate at Cn/Cn with M = H∗(Sρn):

HCn∗ (Sρn)
IndCn

e←−−−− He
∗(S2) 0←− He

∗(S2)

HCn
0 (S2ρn)∼= A(Cn)/[Cn]

HCn
odd(S2ρn)∼= 0

HCn
2 (S2ρn)∼=Z/(n)

HCn
4 (S2ρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (S2ρn)

M ε←− M⊗Cn
g−1←−−− M⊗Cn

Evaluate at Cn/Cn with M = H∗(Sρn):

HCn∗ (Sρn)
IndCn

e←−−−− He
∗(S2) 0←− He

∗(S2)

HCn
0 (S2ρn)∼= A(Cn)/[Cn]

HCn
odd(S2ρn)∼= 0

HCn
2 (S2ρn)∼=Z/(n)

HCn
4 (S2ρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (S2ρn)

M ε←− M⊗Cn
g−1←−−− M⊗Cn

Evaluate at Cn/Cn with M = H∗(Sρn):

HCn∗ (Sρn)

IndCn
e←−−−−

He
∗(S2)

0←−

He
∗(S2)

HCn
0 (S2ρn)∼= A(Cn)/[Cn]

HCn
odd(S2ρn)∼= 0

HCn
2 (S2ρn)∼=Z/(n)

HCn
4 (S2ρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (S2ρn)

M ε←− M⊗Cn
g−1←−−− M⊗Cn

Evaluate at Cn/Cn with M = H∗(Sρn):

HCn∗ (Sρn)
IndCn

e←−−−− He
∗(S2) 0←− He

∗(S2)

HCn
0 (S2ρn)∼= A(Cn)/[Cn]

HCn
odd(S2ρn)∼= 0

HCn
2 (S2ρn)∼=Z/(n)

HCn
4 (S2ρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (S2ρn)

M ε←− M⊗Cn
g−1←−−− M⊗Cn

Evaluate at Cn/Cn with M = H∗(Sρn):

HCn∗ (Sρn)
IndCn

e←−−−− He
∗(S2) 0←− He

∗(S2)

HCn
0 (S2ρn)∼= A(Cn)/[Cn]

HCn
odd(S2ρn)∼= 0

HCn
2 (S2ρn)∼=Z/(n)

HCn
4 (S2ρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (S2ρn)

M ε←− M⊗Cn
g−1←−−− M⊗Cn

Evaluate at Cn/Cn with M = H∗(Sρn):

HCn∗ (Sρn)
IndCn

e←−−−− He
∗(S2) 0←− He

∗(S2)

HCn
0 (S2ρn)∼= A(Cn)/[Cn]

HCn
odd(S2ρn)∼= 0

HCn
2 (S2ρn)∼=Z/(n)

HCn
4 (S2ρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (S2ρn)

M ε←− M⊗Cn
g−1←−−− M⊗Cn

Evaluate at Cn/Cn with M = H∗(Sρn):

HCn∗ (Sρn)
IndCn

e←−−−− He
∗(S2) 0←− He

∗(S2)

HCn
0 (S2ρn)∼= A(Cn)/[Cn]

HCn
odd(S2ρn)∼= 0

HCn
2 (S2ρn)∼=Z/(n)

HCn
4 (S2ρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (S2ρn)

M ε←− M⊗Cn
g−1←−−− M⊗Cn

Evaluate at Cn/Cn with M = H∗(Sρn):

HCn∗ (Sρn)
IndCn

e←−−−− He
∗(S2) 0←− He

∗(S2)

HCn
0 (S2ρn)∼= A(Cn)/[Cn]

HCn
odd(S2ρn)∼= 0

HCn
2 (S2ρn)∼=Z/(n)

HCn
4 (S2ρn)∼=Z

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Smρn; A)

One can compute these groups inductively and get a regular
pattern.

HCn
0 ((Smρn)∼= A(Cn)/([Cn]).

HCn
odd((Smρn)∼= 0.

For 0< i < m, HCn
2i (Smρn)∼=Z/(n).

HCn
2m(Smρn)∼=Z.

Can also compute directly from a single chain complex.

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Smρn; A)

One can compute these groups inductively and get a regular
pattern.
HCn

0 ((Smρn)∼= A(Cn)/([Cn]).

HCn
odd((Smρn)∼= 0.

For 0< i < m, HCn
2i (Smρn)∼=Z/(n).

HCn
2m(Smρn)∼=Z.

Can also compute directly from a single chain complex.

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Smρn; A)

One can compute these groups inductively and get a regular
pattern.
HCn

0 ((Smρn)∼= A(Cn)/([Cn]).

HCn
odd((Smρn)∼= 0.

For 0< i < m, HCn
2i (Smρn)∼=Z/(n).

HCn
2m(Smρn)∼=Z.

Can also compute directly from a single chain complex.

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Smρn; A)

One can compute these groups inductively and get a regular
pattern.
HCn

0 ((Smρn)∼= A(Cn)/([Cn]).

HCn
odd((Smρn)∼= 0.

For 0< i < m, HCn
2i (Smρn)∼=Z/(n).

HCn
2m(Smρn)∼=Z.

Can also compute directly from a single chain complex.

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Smρn; A)

One can compute these groups inductively and get a regular
pattern.
HCn

0 ((Smρn)∼= A(Cn)/([Cn]).

HCn
odd((Smρn)∼= 0.

For 0< i < m, HCn
2i (Smρn)∼=Z/(n).

HCn
2m(Smρn)∼=Z.

Can also compute directly from a single chain complex.

Justin Noel UniBonn, MPIM

π?HA

HCn∗ (Smρn; A)

One can compute these groups inductively and get a regular
pattern.
HCn

0 ((Smρn)∼= A(Cn)/([Cn]).

HCn
odd((Smρn)∼= 0.

For 0< i < m, HCn
2i (Smρn)∼=Z/(n).

HCn
2m(Smρn)∼=Z.

Can also compute directly from a single chain complex.

Justin Noel UniBonn, MPIM

π?HA

Päuschen

Justin Noel UniBonn, MPIM

π?HA

Multiplicative relations

There are also external products

HG
∗ (SV)⊗HG

∗ (SW)→ HG
∗ (SV+W).

These relate the (co)homology groups of different
representation spheres.
Can deduce from spectral sequence and Green functor
relations.

Justin Noel UniBonn, MPIM

π?HA

Multiplicative relations

There are also external products

HG
∗ (SV)⊗HG

∗ (SW)→ HG
∗ (SV+W).

These relate the (co)homology groups of different
representation spheres.

Can deduce from spectral sequence and Green functor
relations.

Justin Noel UniBonn, MPIM

π?HA

Multiplicative relations

There are also external products

HG
∗ (SV)⊗HG

∗ (SW)→ HG
∗ (SV+W).

These relate the (co)homology groups of different
representation spheres.
Can deduce from spectral sequence and Green functor
relations.

Justin Noel UniBonn, MPIM

π?HA

Some Relations

i∗(1)= aV ∈ HG
0 (SV) induced by inclusion of S0 → SV .

V orientable, uV ∈ HG
|V |(S

V) (generates top class).

V orientable, vV ∈ H|V |
G (SV) (generates top class).

aV aW = aV+W .
uV uW = uV+W .
vρn uρn = [Cn]

vρn vρn = [Cn]v2ρn

Justin Noel UniBonn, MPIM

π?HA

Some Relations

i∗(1)= aV ∈ HG
0 (SV) induced by inclusion of S0 → SV .

V orientable, uV ∈ HG
|V |(S

V) (generates top class).

V orientable, vV ∈ H|V |
G (SV) (generates top class).

aV aW = aV+W .
uV uW = uV+W .
vρn uρn = [Cn]

vρn vρn = [Cn]v2ρn

Justin Noel UniBonn, MPIM

π?HA

Some Relations

i∗(1)= aV ∈ HG
0 (SV) induced by inclusion of S0 → SV .

V orientable, uV ∈ HG
|V |(S

V) (generates top class).

V orientable, vV ∈ H|V |
G (SV) (generates top class).

aV aW = aV+W .
uV uW = uV+W .
vρn uρn = [Cn]

vρn vρn = [Cn]v2ρn

Justin Noel UniBonn, MPIM

π?HA

Some Relations

i∗(1)= aV ∈ HG
0 (SV) induced by inclusion of S0 → SV .

V orientable, uV ∈ HG
|V |(S

V) (generates top class).

V orientable, vV ∈ H|V |
G (SV) (generates top class).

aV aW = aV+W .

uV uW = uV+W .
vρn uρn = [Cn]

vρn vρn = [Cn]v2ρn

Justin Noel UniBonn, MPIM

π?HA

Some Relations

i∗(1)= aV ∈ HG
0 (SV) induced by inclusion of S0 → SV .

V orientable, uV ∈ HG
|V |(S

V) (generates top class).

V orientable, vV ∈ H|V |
G (SV) (generates top class).

aV aW = aV+W .
uV uW = uV+W .

vρn uρn = [Cn]

vρn vρn = [Cn]v2ρn

Justin Noel UniBonn, MPIM

π?HA

Some Relations

i∗(1)= aV ∈ HG
0 (SV) induced by inclusion of S0 → SV .

V orientable, uV ∈ HG
|V |(S

V) (generates top class).

V orientable, vV ∈ H|V |
G (SV) (generates top class).

aV aW = aV+W .
uV uW = uV+W .
vρn uρn = [Cn]

vρn vρn = [Cn]v2ρn

Justin Noel UniBonn, MPIM

π?HA

Some Relations

i∗(1)= aV ∈ HG
0 (SV) induced by inclusion of S0 → SV .

V orientable, uV ∈ HG
|V |(S

V) (generates top class).

V orientable, vV ∈ H|V |
G (SV) (generates top class).

aV aW = aV+W .
uV uW = uV+W .
vρn uρn = [Cn]

vρn vρn = [Cn]v2ρn

Justin Noel UniBonn, MPIM

π?HA

Computations for G = C2, M =Z

Justin Noel UniBonn, MPIM

π?HA

Computations for G = C2, M =Z

Justin Noel UniBonn, MPIM

π?HA

Computations for G = C2, M =Z

Justin Noel UniBonn, MPIM

π?HA

Computations for G = C2 M =Z

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Brace yourselves

Diagonal gives total degree.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

C∗(Sρ5)⊗ A

0 1 2

0 A A⊗C5
εoo A⊗C5

g−1oo

Diagonal gives total degree.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

C∗(Sρ5)⊗ A ∼= C−∗(S−ρ5)⊗ A

0

0 A

∆
��

−1 A⊗C5

gk−1
��

−2 A⊗C5

Diagonal gives total degree.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

0 1 2

0 A

∆
��

A⊗C5
εoo

[∆]
��

A⊗C5
g−1oo

[∆]
��

−1 A⊗C5

gk−1
��

A⊗C5 ⊗C5
−[ε]oo

[gk]−[1]
��

A⊗C5 ⊗C5

[gk]−[1]
��

[1]−[g]oo

−2 A⊗C5 A⊗C5 ⊗C5[ε]
oo A⊗C5 ⊗C5[g]−[1]

oo

Diagonal gives total degree.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

0 1 2

0 A

∆
��

A⊗C5
εoo

[∆]
��

A⊗C5
g−1oo

[∆]
��

−1 A⊗C5

gk−1
��

A⊗C5 ⊗C5
−[ε]oo

[gk]−[1]
��

A⊗C5 ⊗C5

[gk]−[1]
��

[1]−[g]oo

−2 A⊗C5 A⊗C5 ⊗C5[ε]
oo A⊗C5 ⊗C5[g]−[1]

oo

Diagonal gives total degree.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Compute cohomological (↓) direction first.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Compute cohomological (↓) direction first.

0 1 2

0 Ã(C5) 0 0

−1 0 0 0

−2 Z Z Z

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Compute cohomological (↓) direction first.

0 1 2

0 Ã(C5) 0 0

−1 0 0 0

−2 Z Z
?

oo Z
?

oo

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Compute homological (←) direction first.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Compute homological (←) direction first.

0 1 2

0 A(C5)/[C5] 0 Z

−1 0 0 Z

−2 0 0 Z

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Compute homological (←) direction first.

0 1 2

0 A(C5)/[C5] 0 Z

?
��

−1 0 0 Z

?
��

−2 0 0 Z

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Resolve differentials for first spectral sequence.

0 1 2

0 A(C5)/[C5] 0 Z

1
��

−1 0 0 Z

0
��

−2 0 0 Z

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Resolve differentials for second spectral sequence.

We have an extension:

0→ Ã(C5)→ HC5
0 (Sρ5−ρ⊗k

5)→Z→ 0

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Resolve differentials for second spectral sequence.

0 1 2

0 Ã(C5) 0 0

−1 0 0 0

−2 Z Z
1

oo Z
0
oo

We have an extension:

0→ Ã(C5)→ HC5
0 (Sρ5−ρ⊗k

5)→Z→ 0

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Resolve differentials for second spectral sequence.

0 1 2

0 Ã(C5) 0 0

−1 0 0 0

−2 0 0 Z

We have an extension:

0→ Ã(C5)→ HC5
0 (Sρ5−ρ⊗k

5)→Z→ 0

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Resolve differentials for second spectral sequence.

0 1 2

0 Ã(C5) 0 0

−1 0 0 0

−2 0 0 Z

We have an extension:

0→ Ã(C5)→ HC5
0 (Sρ5−ρ⊗k

5)→Z→ 0

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Our extension problem:

0→ Ã(C5)→ HC5
0 (Sρ5−ρ⊗k

5)→Z→ 0

Extension splits additively, but not as A(C5) modules.
Use bicomplex to solve extension.
If k =±1 mod 5 get A(C5)= HC5

0 (S0).
If k =±2 mod 5 get a projective A(C5) module of rank one.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Our extension problem:

0→ Ã(C5)→ HC5
0 (Sρ5−ρ⊗k

5)→Z→ 0

Extension splits additively, but not as A(C5) modules.

Use bicomplex to solve extension.
If k =±1 mod 5 get A(C5)= HC5

0 (S0).
If k =±2 mod 5 get a projective A(C5) module of rank one.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Our extension problem:

0→ Ã(C5)→ HC5
0 (Sρ5−ρ⊗k

5)→Z→ 0

Extension splits additively, but not as A(C5) modules.
Use bicomplex to solve extension.

If k =±1 mod 5 get A(C5)= HC5
0 (S0).

If k =±2 mod 5 get a projective A(C5) module of rank one.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Our extension problem:

0→ Ã(C5)→ HC5
0 (Sρ5−ρ⊗k

5)→Z→ 0

Extension splits additively, but not as A(C5) modules.
Use bicomplex to solve extension.
If k =±1 mod 5 get A(C5)= HC5

0 (S0).

If k =±2 mod 5 get a projective A(C5) module of rank one.

Justin Noel UniBonn, MPIM

π?HA

HC5∗ (Sρ5−ρ⊗k
5 ; A)

Our extension problem:

0→ Ã(C5)→ HC5
0 (Sρ5−ρ⊗k

5)→Z→ 0

Extension splits additively, but not as A(C5) modules.
Use bicomplex to solve extension.
If k =±1 mod 5 get A(C5)= HC5

0 (S0).
If k =±2 mod 5 get a projective A(C5) module of rank one.

Justin Noel UniBonn, MPIM

π?HA

Summary

We can also determine explicit models for the irreducible real
representations of Cn, Dn, A4, and S4.

We can compute the homology and cohomology of these
representation spheres.
Calculating HG∗ (SV+W) is generally difficult due to
complications in the spectral sequence.
There is still plenty of other computations left to do.

Justin Noel UniBonn, MPIM

π?HA

Summary

We can also determine explicit models for the irreducible real
representations of Cn, Dn, A4, and S4.
We can compute the homology and cohomology of these
representation spheres.

Calculating HG∗ (SV+W) is generally difficult due to
complications in the spectral sequence.
There is still plenty of other computations left to do.

Justin Noel UniBonn, MPIM

π?HA

Summary

We can also determine explicit models for the irreducible real
representations of Cn, Dn, A4, and S4.
We can compute the homology and cohomology of these
representation spheres.
Calculating HG∗ (SV+W) is generally difficult due to
complications in the spectral sequence.

There is still plenty of other computations left to do.

Justin Noel UniBonn, MPIM

π?HA

Summary

We can also determine explicit models for the irreducible real
representations of Cn, Dn, A4, and S4.
We can compute the homology and cohomology of these
representation spheres.
Calculating HG∗ (SV+W) is generally difficult due to
complications in the spectral sequence.
There is still plenty of other computations left to do.

Justin Noel UniBonn, MPIM

π?HA

Twisted tetrahedral representation of Σ4

Justin Noel UniBonn, MPIM

π?HA

Twisted tetrahedral representation of Σ4

Justin Noel UniBonn, MPIM

π?HA

Twisted tetrahedral representation of Σ4

Justin Noel UniBonn, MPIM

π?HA

End

Justin Noel UniBonn, MPIM

	Pic(SG)-graded homotopy groups

