For Complex Orientations Preserving Power Operations, *p*-Typicality is Atypical

Justin Noel Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée Strasbourg, France

> Ruhr-Universität Bochum May 3rd, 2010

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

MU can be taken as a nexus in stable homotopy theory.

■ There is a spectrum *MU* satisfying:

 $\pi_n MU \cong \{ \text{Complex cobordism classes of n-manifolds} \}.$

There is a spectral sequence (ANSS)

$$Ext_{MU_*MU}^{*,*}(MU_*, MU_*) \implies \pi_*S.$$

MU serves as a conduit between the theory of formal group laws and stable homotopy theory.

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

The Adams Novikov Spectral Sequence

The determination of

$$E_2^{*,*} = Ext_{MU_*MU}^{*,*}(MU_*, MU_*)$$

is an algebraic problem which only requires data from the theory of formal group laws.

- Philosophy: The differentials and extensions in this spectral sequence yielding π_{*}S can always be determined by using E_∞ structures.
- One can try to use constructions in the theory of formal group laws, to organize the above calculation into digestible pieces.
- Before saying more about this, let me review some basics of homotopy theory.

Cohomology theories and spectra

So what is a spectrum?

- Generalized cohomology theories are realized by spectra.
- This permits manipulating cohomology theories like algebraic objects (modules, rings, etc.).
- We have a functor

 Σ^{∞}_{+} : hTop \rightarrow hSpectra.

- We also have constructions in spectra that mimic those of topological spaces (Cartesian products, smash products, fibrations).
- Additive approximation to the homotopy category of spaces.

Justin Noel, Joint w/ Niles Johnson

Cohomology theories and spectra II

Maps

$$\Sigma^{i}E \rightarrow \Sigma^{j}F$$

correspond to natural transformations

$$E^*(-) \rightarrow F^{*+j-i}(-)$$

If E is a ring spectrum, then E*(-) takes spaces to graded rings, the multiplicative structure comes from maps

$$E \wedge E \rightarrow E.$$

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

Formal group laws

The tensor product of complex line bundles induces a map on classifying spaces:

$$BU(1) \times BU(1) \rightarrow BU(1).$$

This induces maps the other way in cohomology:

$$\pi_* MU\llbracket z \rrbracket \cong MU^*(BU(1)) \xrightarrow{\Delta} MU^*(BU(1) imes BU(1)) \cong \pi_* MU\llbracket x, y \rrbracket.$$

The associative, unital, and symmetric properties of the tensor product make

$$\Delta(z) = F(x, y) = x +_F y \in \pi_* MU[[x, y]]$$

into a formal group law over π_*MU .

Justin Noel, Joint w/ Niles Johnson

Formal group laws II

•
$$F(x,0) = 0 = F(0,y).$$

$$F(x,y)=F(y,x).$$

$$F(F(x,y),z) = F(x,F(y,z)).$$

• Example (
$$\mathbb{G}_a$$
): $F(x, y) = x + y$.

Example (
$$\mathbb{G}_m$$
): $F(x, y) = x + y + xy$.

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

Lazard's Theorem

Theorem (Lazard)

The ring $L \cong \mathbb{Z}[u_1, u_2, ...]$ can be equipped with a universal formal group law $U(x, y) \in L[x, y]$. In other words, if G(x, y) is a formal group law R, then there is a unique map

 $f:L \to R$

such that

$$f_*U(x,y)=G(x,y).$$

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

Quillen's Theorem

Theorem (Quillen)

The universal map from L to π_*MU is an isomorphism.

Corollary

$$\pi_*MU \cong \mathbb{Z}[u_1, u_2, \ldots], \ |u_i| = 2i.$$

Theorem (Adams)

A complex orientation $MU \rightarrow E$ is a map of ring spectra that determines a formal group law in $E^*(BU(1) \times BU(1))$ under the above isomorphism.

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

p-typical formal group laws

Definition

A formal group law *F* is *p*-typical if the *p*-fold formal sum $[p]_F(z) = z +_F z +_F \cdots +_F z$ can be expressed as

$$[p]_F(z) = \sum_{n\geq 0}^F a_n z^{p^n}.$$

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

p-typical formal group laws

Alternatively, if F is defined over a torsion free ring this is equivalent to requiring

$$\log_F(x) = \sum_{n \ge 0} b_n x^{p^n}$$

where

$$x +_F y = \log_F^{-1}(\log_F(x) + \log_F(y)).$$

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

The Brown-Peterson spectrum

Applying a standard construction in the theory of formal group laws, Quillen was able to construct an idempotent map:

$$MU_{(p)} \xrightarrow{\varepsilon} MU_{(p)}$$

that classified a universal *p*-typical formal group law.

The "image" of this map MU_(p) is the Brown-Peterson ring spectrum BP. It satisfies a p-typical analogue of the universal property for MU.

For Complex Orientations Preserving Power Operations, p-Typicality is Atypical

E_{∞} ring spectra

- So far, everything has been up to homotopy.
- Would like our homotopy commutative and associative multiplication to satisfy some additional coherence data.
- For example, given a cohomology class

$$f: X \to F \in F^0(X),$$

take its *p*th power and then multiply:

$$\mu^{p-1} \circ f^{\wedge p} : X^{\wedge p} \to F^{\wedge p} \to F.$$

We would like the composite to be Σ_{ρ} equivariant.

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

E_{∞} ring spectra II

If F is suitably commutative then, we can extend our multiplication over a Borel construction before passing to homotopy:

$$D_{\rho}\mu \circ D_{\rho}f: E\Sigma_{\rho,+} \wedge_{\Sigma_{\rho}} X^{\wedge \rho} \to E\Sigma_{\rho,+} \wedge_{\Sigma_{\rho}} F^{\wedge \rho} \to F.$$

• $E \Sigma_{\rho,+} \wedge_{\Sigma_{\rho}} X^{\wedge p}$ is the homotopical analogue of $X^{\wedge p} / \Sigma_{\rho}$.

- If *F* admits such structure maps in a suitably compatible way then *F* is an *E*_∞ ring spectrum.
- Such spectra have a product that can be made strictly unital, associative, and commutative.
- This structure is enough to perform many algebraic constructions in spectra (EKMM).

H_{∞} ring spectra

- The definition of *E*_∞ ring spectra predated most of the applications by about 20 years.
- For most applications it sufficed to have the above coherence data hold in the homotopy category.
- Such a spectrum is an H_{∞} ring spectrum.
- This data is exactly enough to define a nice theory of power operations satisfying analogues of the Adem relations.
- Examples: $H\mathbb{Z}/p, K, MU$.

An example due to Kraines-Lada

- After passing to the homotopy category an E_{∞} ring spectrum becomes an H_{∞} ring spectrum.
- Does the converse hold?
- No. Applying Σ[∞]₊ to the counterexample to the transfer conjecture constructed by Kraines and Lada gives an example of a ring spectrum which is not *E*₃, yet this multiplicative structure defines an *H*[∞] structure in the homotopy category.

A well known conjecture

• MU is a very beautiful spectrum with a canonical E_{∞} ring structure. The Brown-Peterson spectrum is also quite beautiful and closely related MU.

Conjecture

BP is E_{∞} .

- Some partial results:
 - (Basterra-Mandell) BP is E_4 .
 - (Richter) *BP* is $2(p^2 + p + 1)$ homotopy-commutative.
 - (Goerss/Lazarev) *BP* and *many* of its derivatives are

 $E_1 = A_{\infty}$ -spectra under *MU* (in many ways).

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

Our result

Theorem (Johnson-Noel)

If p is a prime smaller than 17, then Quillen's map $r:MU\to BP$ is not a map of H_∞ ring spectra.

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

The more general result

Theorem (Johnson-Noel)

Suppose $f: MU \to E$ is a map of H_{∞} ring spectra satisfying:

The map f factors through BP

$$MU o MU_{(p)} o BP o E,$$

(in other words, the formal group law associated to E is *p*-typical)

- the map f makes E_{*} into a Landweber exact theory,
- the above prime p is smaller than 17,
- then π_*E is a \mathbb{Q} -algebra $\implies E$ is a generalized rational Eilenberg-Maclane spectra (*E* is a retract of $H\mathbb{Q} \land E$).

Justin Noel, Joint w/ Niles Johnson

Some notation

Fix an isomorphism

$$MU^*(BU(1) \times BC_p) \cong \pi_*MU[[x, \xi]]/([p]_{MU}\xi)$$

- Let $\chi = \prod_{i=1}^{p-1} [i]_{MU} \xi$ denote the *MU* Euler class of the reduced regular representation of C_p .
- Define $a_i(\xi)$ by

$$P_{C_{p}}(x) = \prod_{i=0}^{p-1} ([i]_{MU}\xi +_{MU}x) = a_{0}(\xi)x + a_{1}(\xi)x^{2} + a_{2}(\xi)x^{3} + \cdots$$

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

Algebraic interpretation

Theorem

The map $r : MU \to BP$ is an H_{∞} map if and only if $r \circ \overline{P_{C_p,MU}}$ defines p-typical formal group law over $BP^{BC_p}[\chi^{-1}]$.

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

Critical Lemmas

Theorem (Quillen)

If $x \in MU^{-2q}(X)$ and $m \gg 0$ then

$$\chi^{m+q} \mathcal{P}_{C_p} x = \chi^q \sum_{|\alpha|=m} a_{\alpha} s_{\alpha}(x).$$

Theorem (Adams-Novikov)

$$s_{\alpha}[\mathbb{C}P^n] = (b_0 + b_1 + b_2 + \cdots)_{\alpha}^{-(n+1)}[\mathbb{C}P^{n-|\alpha|'}]$$

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

Formula

$$\begin{aligned} \mathcal{MC}_n(\xi) &= \chi^{2n} \mathcal{P}_{\mathcal{C}_p}[\mathbb{C}\mathcal{P}^n] \\ &= \chi^{2n+1} \sum_{k=0}^n r_*[\mathbb{C}\mathcal{P}^{n-k}] \cdot \left(\left(\sum_{i \ge 0} a_i z^i \right)^{-(n+1)} \right) [z^k]. \end{aligned}$$

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

Computational Results

• When
$$p = 2$$
, $MC_2(\xi) = (v_1^6 + v_2^2)\xi^6 + O(\xi^7)$.

- When p = 3, $MC_4(\xi) = 2v_1^9\xi^{22} + O(\xi^{23})$.
- When p = 5, $MC_8(\xi) = 3v_1^{16}\xi^{88} + O(\xi^{89})$.
- When p = 7, $MC_{12}(\xi) = 4v_1^{22}\xi^{192} + O(\xi^{193})$.
- When p = 11, $MC_{20}(\xi) = 9v_1^{34}\xi^{520} + O(\xi^{521})$.
- When p = 13, $MC_{24}(\xi) = 11v_1^{40}\xi^{744} + O(\xi^{745})$.

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

Pattern

We have the following pattern: In the computed range, for $p \ge 5$ up to multiplication by units:

$$MC_{2(p-1)}(\xi) = v_1^{3p+1}\xi^{5p^2-8p+3} + O(\xi^{5p^2-8p+4}).$$

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée

Summary

- Each of the previous calculations needs to be 0 mod $\langle p \rangle \xi$.
- In BP they are not zero because the leading term is not divisible by p.
- These are the first of many obstructions to an E_{∞} map.
- In our additional examples, these obstructions will not vanish unless the target ring is the 0-ring.

Justin Noel, Joint w/ Niles Johnson

Possibilities

- Could there be an E_{∞} orientation for higher primes?
 - That would be confusing.
 - *p*-typicality is not a natural notion
- Geometry vs. Algebra
- Perhaps better to build E_∞ spectrum models for the algebra independently.

Justin Noel, Joint w/ Niles Johnson

Some notation

• Let $\alpha = (\alpha_0, \alpha_1, \dots)$ be a multi-index

Given an infinite list of variable a_0, a_1, a_2, \ldots , we set

$$a^{lpha} = a_0^{lpha_0} a_1^{lpha_1} \dots$$

Given a formal power series b in b_0, b_1, b_2, \ldots we set:

$$b_{\alpha} = \text{Coefficient of } b_0^{\alpha_0} b_1^{\alpha_1} \dots$$

$$|\alpha| = \sum_{i \ge 1} \alpha_i.$$
$$|\alpha|' = \sum_{i \ge 1} i \alpha_i.$$

Justin Noel, Joint w/ Niles Johnson

Institut de Recherche Mathématique Avancée