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May’s conjecture

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an
H∞-ring spectrum, and

x ∈ ker(π∗R → H∗(R;Z)) .

Then x is nilpotent, i.e., xn = 0 for n À 0.

When R = S =⇒ Nishida’s nilpotence theorem.
In contrast to the nilpotence theorem
(Devinatz-Hopkins-Smith):
We do not need to know about MU∗R, but now require R to
be H∞.
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E∞/H∞-rings

An E∞-ring spectrum R has extended power maps:

µn : EΣn+∧Σn Rn → R

The {µn}n≥0 are required to fit into some commutating
diagrams.
All of these diagrams are in Spectra.
Analogous definition in ho(Spectra) yields H∞-ring spectra.
Obtain forgetful functor:

U : ho(E∞−Spectra)→ H∞−Spectra.

R is E∞ ' comm. S-algebra=⇒ R is H∞.
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Examples of E∞/H∞-rings

Let X be a simply connected space of finite type.

k Spaces E∞ModHk H∞ModHk ⊂ k∗v.s.
Q XQ HQX ' C∗(X ;Q) H∗(X ;Q)
Fp X p HF

X
p ' C∗(X ;Fp) H∗(X ;Fp)

Sullivan theory says we can recover XQ from the E∞ algebra
HQX .

Only get H∗(X ;Q) ∈Q-CAlg .
Mandell’s theory says we can recover X p from the E∞-algebra
HF

X
p .

Only get H∗(X ;Fp) as an unstable algebra over Steenrod
algebra.
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Main result

Theorem (Mathew-Naumann-N.)

Suppose that R is an H∞-ring spectrum. Suppose that x ∈π∗R has
nilpotent image in H∗(R;Q) and H∗(R;Fp) for ∀ primes p.
Then x is nilpotent.

Corollary
May’s conjecture: Suppose that R is an H∞-ring spectrum and
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Proof of thm

Since x has nilpotent image H∗(R;Q)∼=π∗R⊗Q, ∃m s.t. xm is
torsion.

y := xm is nilpotent ⇐⇒ x is nilpotent.
WTS that our torsion y has nilpotent image in K(n)∗R.
Hurewicz map factors

π∗R →π∗LK(n)(En ∧R)→ K(n)∗(R).

Im(y) ∈π∗LK(n)(En ∧R) is nilpotent =⇒ Im(y) ∈ K(n)∗(R) is
nilpotent=⇒ the main theorem.
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Proof of thm II

π∗LK(n)(En ∧R) is p-local.

Assume y ∈π∗LK(n)(En ∧R) is pm-torsion.
We then show that yp+1 ∈π∗LK(n)(En ∧R) is pm−1-torsion.
So y(p+1)m = 0 ∈π∗LK(n)(En ∧R) and the theorem follows.
Argument uses analogues of ψ/θ-operations and the formula:

yp =ψ(y)+ pθ(y).

This depends on work of Rezk and Strickland.
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String manifolds

Recall that a String structure on a smooth manifold M is

BString= BO〈8〉

M BO(n) BOτ

Similar definitions for Spin-manifolds, SO-manifolds, ...

 E∞ Thom spectra MString, MSO, . . .

π∗MString∼=Ω∗
String,π∗MSpin∼=Ω∗

Spin . . .

Forgetful maps:

MString→ MSpin→ MSO→ MO
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String bordism

Theorem (Mathew-Naumann-N.)

For a String manifold M. The following are equivalent:

1 For n À 0, M×n bounds a String manifold.

2 M bounds an oriented manifold.
3 The Stiefel-Whitney and Pontryagin numbers of M vanish.

(2) ⇐⇒ (3) is classical.
Claim is equivalent to

Nil(π∗MString)= ker(π∗MString→π∗MSO).

We will show these are both are equal to

ker(π∗MString→ H∗(MString;Z)).
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Nil(π∗MString)

May’s conjecture =⇒

ker(π∗MString→ H∗(MString;Z))⊆Nil(π∗MString).

Always have

Im(Nil(π∗MString))⊆Nil(H∗(MString;Z)).

We will show

Nil(H∗(MString;Z))⊆Nil(H∗(MSO;Z))= 0.

=⇒ ker(π∗MString→ H∗(MString;Z))=Nil(π∗MString).
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H∗(MString;Z)

We will show:

π∗MString H∗(MString;Z)

π∗MSO H∗(MSO;Z)

=⇒ ker(π∗MString→π∗MSO)= ker(π∗MString→ H∗(MString;Z)).

So want to analyze H∗(MString;Z).
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Thom isomorphisms

Have multiplicative isos H∗(MG;k)∼= H∗(BG;k) for
G =SO,Spin,String.

So we need to analyze H∗(BG;Z) and show it is reduced (no
nilpotents).
H∗(BG;Z) is fin. gen. in each degree.
=⇒ We can assemble this computation from

H∗(BG;Z[1/2]) and H∗(BG;Z2)
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H∗(BString;Z[1/2])

Serre SS =⇒
H∗(BString;Q) H∗(BSpin;Q) H∗(BSO;Q)

Moreover these are all polynomial algebras, so they are
reduced.

Have retraction

KO[1/2] KU[1/2] KO[1/2].⊗C U

=⇒ a retraction

H∗(BO〈k〉;Z[1/2])→ H∗(BU〈k〉;Z[1/2])→ H∗(BO〈k〉;Z[1/2]).

Work of Hovey-Ravenel =⇒ for k ≤ 8, H∗(BU〈k〉;Z[1/2]) is
torsion free.
=⇒ For k ≤ 8, H∗(BO〈k〉;Z[1/2]) is torsion free.
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π∗MString

Lemma (Mathew-Naumann-N.)

To summarize there is a commutative diagram:

π∗MString H∗(MString;Z) H∗(MString;F2)×H∗(MString;Q)

π∗MSpin H∗(MSpin;Z) H∗(MSpin;F2)×H∗(MSpin;Q)

π∗MSO H∗(MSO;Z) H∗(MSO;F2)×H∗(MSO;Q)

Theorem (Mathew-Naumann-N.)

This implies

ker(π∗MString→π∗MSO)= ker(π∗MString→ H∗(MString;Z))

=Nil(π∗MString).

and the result follows.
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Lemma (Mathew-Naumann-N.)
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Further applications

Have similar nilpotence results for Spin-manifolds,
U〈6〉-manifolds, and SU-manifolds.

Can deduce differentials in the Adams SS for connective
E∞-ring spectra.
Can show ring spectra such as BP/(p3v2

n),ku/(30β5), and
tmf /4 do not admit E∞ ring structures.
Can show ‘half’ of Quillen’s F-isomorphism theorem for
Lubin-Tate theories.
We have since generalized this, with an independent argument,
to general complex oriented cohomology theories for finite
p-groups.
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End

Thank you for your attention!
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