On a nilpotence conjecture of J.P. May

Justin Noel joint with Akhil Mathew and Niko Naumann

University of Regensburg

June 24, 2014

Conjecture (May - 1986)

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_{∞} -ring spectrum,

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_{∞} -ring spectrum, and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_{∞} -ring spectrum, and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Then x is nilpotent.

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_{∞} -ring spectrum, and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Then x is nilpotent, i.e., $x^n = 0$ for $n \gg 0$.

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_{∞} -ring spectrum, and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Then x is nilpotent, i.e., $x^n = 0$ for $n \gg 0$.

• When R = S

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_{∞} -ring spectrum, and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Then x is nilpotent, i.e., $x^n = 0$ for $n \gg 0$.

• When $R = S \Longrightarrow$ Nishida's nilpotence theorem.

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_{∞} -ring spectrum, and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Then x is nilpotent, i.e., $x^n = 0$ for $n \gg 0$.

- When $R = S \Longrightarrow$ Nishida's nilpotence theorem.
- In contrast to the nilpotence theorem (Devinatz-Hopkins-Smith):

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_{∞} -ring spectrum, and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Then x is nilpotent, i.e., $x^n = 0$ for $n \gg 0$.

- When $R = S \Longrightarrow$ Nishida's nilpotence theorem.
- In contrast to the nilpotence theorem (Devinatz-Hopkins-Smith): We do not need to know about MU_*R

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_{∞} -ring spectrum, and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Then x is nilpotent, i.e., $x^n = 0$ for $n \gg 0$.

• When $R = S \Longrightarrow$ Nishida's nilpotence theorem.

Proof of May's conjecture

• In contrast to the nilpotence theorem (Devinatz-Hopkins-Smith): We do not need to know about MU_*R , but now require R to be H_{∞} .

Conjecture (May - 1986)

Suppose that R is a ring spectrum with power operations, i.e., an H_{∞} -ring spectrum, and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Then x is nilpotent, i.e., $x^n = 0$ for $n \gg 0$.

• When $R = S \implies$ Nishida's nilpotence theorem.

Proof of May's conjecture

• In contrast to the nilpotence theorem (Devinatz-Hopkins-Smith): We do not need to know about MU_*R , but now require R to be H_{∞} .

$E_{\infty}\overline{/H_{\infty}}$ -rings

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

• An E_{∞} -ring spectrum R has extended power maps:

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

• The $\{\mu_n\}_{n\geq 0}$ are required to fit into some commutating diagrams.

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

- The $\{\mu_n\}_{n\geq 0}$ are required to fit into some commutating diagrams.
- All of these diagrams are in Spectra.

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

- The $\{\mu_n\}_{n\geq 0}$ are required to fit into some commutating diagrams.
- All of these diagrams are in Spectra.
- Analogous definition in ho(Spectra) yields H_{∞} -ring spectra.

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

- The $\{\mu_n\}_{n\geq 0}$ are required to fit into some commutating diagrams.
- All of these diagrams are in Spectra.
- Analogous definition in ho(Spectra) yields H_{∞} -ring spectra.
- Obtain forgetful functor:

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

- The $\{\mu_n\}_{n\geq 0}$ are required to fit into some commutating diagrams.
- All of these diagrams are in Spectra.
- Analogous definition in ho(Spectra) yields H_{∞} -ring spectra.
- Obtain forgetful functor:

$$U: ho(E_{\infty}-\text{Spectra}) \to H_{\infty}-\text{Spectra}.$$

• An E_{∞} -ring spectrum R has extended power maps:

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

- The $\{\mu_n\}_{n\geq 0}$ are required to fit into some commutating diagrams.
- All of these diagrams are in Spectra.
- Analogous definition in ho(Spectra) yields H_{∞} -ring spectra.
- Obtain forgetful functor:

$$U: ho(E_{\infty}-\text{Spectra}) \to H_{\infty}-\text{Spectra}.$$

• R is E_{∞}

• An E_{∞} -ring spectrum R has extended power maps:

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

- The $\{\mu_n\}_{n\geq 0}$ are required to fit into some commutating diagrams.
- All of these diagrams are in Spectra.
- Analogous definition in ho(Spectra) yields H_{∞} -ring spectra.
- Obtain forgetful functor:

$$U: ho(E_{\infty}-\text{Spectra}) \to H_{\infty}-\text{Spectra}.$$

• R is $E_{\infty} \simeq \text{comm. } S$ -algebra

• An E_{∞} -ring spectrum R has extended power maps:

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

- The $\{\mu_n\}_{n\geq 0}$ are required to fit into some commutating diagrams.
- All of these diagrams are in Spectra.
- Analogous definition in ho(Spectra) yields H_{∞} -ring spectra.
- Obtain forgetful functor:

$$U: ho(E_{\infty} - \text{Spectra}) \to H_{\infty} - \text{Spectra}.$$

• R is $E_{\infty} \simeq \text{comm. } S$ -algebra $\Longrightarrow R$ is H_{∞} .

• An E_{∞} -ring spectrum R has extended power maps:

$$\mu_n: E\Sigma_{n+} \wedge_{\Sigma_n} R^n \to R$$

- The $\{\mu_n\}_{n\geq 0}$ are required to fit into some commutating diagrams.
- All of these diagrams are in Spectra.
- Analogous definition in ho(Spectra) yields H_{∞} -ring spectra.
- Obtain forgetful functor:

$$U: ho(E_{\infty} - \text{Spectra}) \to H_{\infty} - \text{Spectra}.$$

• R is $E_{\infty} \simeq \text{comm. } S$ -algebra $\Longrightarrow R$ is H_{∞} .

Let X be a simply connected space of finite type.

k | Spaces

 ${E}_{\infty}\mathrm{Mod}_{Hk}$

 $H_{\infty} \text{Mod}_{Hk} \subset k_* \text{v.s.}$

On May's conjecture

k	Spaces	${E}_{\infty}\mathrm{Mod}_{Hk}$	$H_{\infty}\mathrm{Mod}_{Hk} \subset k_* \mathrm{v.s.}$
Q			

$$k \mid \mathsf{Spaces} \quad E_{\infty} \mathsf{Mod}_{Hk} \quad H_{\infty} \mathsf{Mod}_{Hk} \subset k_* \mathrm{v.s.}$$

Examples of $\overline{E_{\infty}}\!/\!H_{\infty}$ -rings

Let X be a simply connected space of finite type.

ullet Sullivan theory says we can recover $X_{\mathbb Q}$ from the E_{∞} algebra $H\mathbb Q^X$.

Let X be a simply connected space of finite type.

$$\begin{array}{|c|c|c|c|c|c|}\hline k & \mathsf{Spaces} & E_{\infty} \mathsf{Mod}_{Hk} & H_{\infty} \mathsf{Mod}_{Hk} \subset k_* \mathrm{v.s.} \\\hline \mathbb{Q} & X_{\mathbb{Q}} & H\mathbb{Q}^X \simeq C^*(X;\mathbb{Q}) & H^*(X;\mathbb{Q}) \\\hline \end{array}$$

ullet Sullivan theory says we can recover $X_{\mathbb Q}$ from the E_{∞} algebra $H\mathbb Q^X$.

- ullet Sullivan theory says we can recover $X_{\mathbb Q}$ from the E_{∞} algebra $H{\mathbb Q}^X.$
- Only get $H^*(X;\mathbb{Q}) \in \mathbb{Q}$ - \mathcal{CAlg} .

- ullet Sullivan theory says we can recover $X_{\mathbb Q}$ from the E_{∞} algebra $H{\mathbb Q}^X.$
- Only get $H^*(X;\mathbb{Q}) \in \mathbb{Q}$ - \mathcal{CAlg} .

Let X be a simply connected space of finite type.

Proof of May's conjecture

$$\begin{array}{c|cccc} k & \mathsf{Spaces} & E_{\infty} \mathrm{Mod}_{Hk} & H_{\infty} \mathrm{Mod}_{Hk} \subset k_* \mathrm{v.s.} \\ \hline \mathbb{Q} & X_{\mathbb{Q}} & H \mathbb{Q}^X \simeq C^*(X;\mathbb{Q}) & H^*(X;\mathbb{Q}) \\ \hline \mathbb{\bar{F}}_p & X_p & \end{array}$$

- ullet Sullivan theory says we can recover $X_{\mathbb Q}$ from the E_{∞} algebra $H{\mathbb Q}^X.$
- Only get $H^*(X;\mathbb{Q}) \in \mathbb{Q}$ - \mathcal{CAlg} .

$$\begin{array}{c|ccccc} k & \mathsf{Spaces} & E_{\infty} \mathsf{Mod}_{Hk} & H_{\infty} \mathsf{Mod}_{Hk} \subset k_* \mathsf{v.s.} \\ \hline \mathbb{Q} & X_{\mathbb{Q}} & H \mathbb{Q}^X \simeq C^*(X;\mathbb{Q}) & H^*(X;\mathbb{Q}) \\ \hline \mathbb{\bar{F}}_p & X_p & H \overline{\mathbb{\bar{F}}}_p^X \simeq C^*(X;\overline{\mathbb{\bar{F}}}_p) & \end{array}$$

- ullet Sullivan theory says we can recover $X_{\mathbb Q}$ from the E_{∞} algebra $H{\mathbb Q}^X.$
- Only get $H^*(X;\mathbb{Q}) \in \mathbb{Q}$ - \mathcal{CAlg} .

- ullet Sullivan theory says we can recover $X_{\mathbb Q}$ from the E_{∞} algebra $H{\mathbb Q}^X.$
- Only get $H^*(X;\mathbb{Q}) \in \mathbb{Q}$ -CAlg.
- ullet Mandell's theory says we can recover X_p from the E_∞ -algebra $H\overline{\mathbb{F}}_p^X$.

Examples of E_{∞}/H_{∞} -rings

Let X be a simply connected space of finite type.

$$\begin{array}{c|ccccc} k & \mathsf{Spaces} & E_{\infty} \mathsf{Mod}_{Hk} & H_{\infty} \mathsf{Mod}_{Hk} \subset k_* \mathsf{v.s.} \\ \hline \mathbb{Q} & X_{\mathbb{Q}} & H\mathbb{Q}^X \simeq C^*(X;\mathbb{Q}) & H^*(X;\mathbb{Q}) \\ \hline \mathbb{F}_p & X_p & H\overline{\mathbb{F}}_p^X \simeq C^*(X;\overline{\mathbb{F}}_p) & H^*(X;\overline{\mathbb{F}}_p) \end{array}$$

- ullet Sullivan theory says we can recover $X_{\mathbb Q}$ from the E_{∞} algebra $H{\mathbb Q}^X.$
- Only get $H^*(X;\mathbb{Q}) \in \mathbb{Q}$ -CAlg.
- ullet Mandell's theory says we can recover X_p from the E_∞ -algebra $H\overline{\mathbb{F}}_p^X$.

Examples of E_{∞}/H_{∞} -rings

Let X be a simply connected space of finite type.

$$\begin{array}{|c|c|c|c|}\hline k & \mathsf{Spaces} & E_{\infty} \mathsf{Mod}_{Hk} & H_{\infty} \mathsf{Mod}_{Hk} \subset k_* \mathsf{v.s.} \\ \hline \mathbb{Q} & X_{\mathbb{Q}} & H\mathbb{Q}^X \simeq C^*(X;\mathbb{Q}) & H^*(X;\mathbb{Q}) \\ \hline \mathbb{\bar{F}}_p & X_p & H\overline{\mathbb{\bar{F}}}_p^X \simeq C^*(X;\overline{\mathbb{\bar{F}}}_p) & H^*(X;\overline{\mathbb{\bar{F}}}_p) \end{array}$$

- ullet Sullivan theory says we can recover $X_{\mathbb Q}$ from the E_{∞} algebra $H{\mathbb Q}^X.$
- Only get $H^*(X;\mathbb{Q}) \in \mathbb{Q}$ -CAlg.
- ullet Mandell's theory says we can recover X_p from the E_∞ -algebra $H\overline{\mathbb{F}}_n^X$.
- Only get $H^*(X; \overline{\mathbb{F}}_p)$ as an unstable algebra over Steenrod algebra.

Examples of E_{∞}/H_{∞} -rings

Let X be a simply connected space of finite type.

$$\begin{array}{|c|c|c|c|}\hline k & \mathsf{Spaces} & E_{\infty} \mathsf{Mod}_{Hk} & H_{\infty} \mathsf{Mod}_{Hk} \subset k_* \mathsf{v.s.} \\ \hline \mathbb{Q} & X_{\mathbb{Q}} & H\mathbb{Q}^X \simeq C^*(X;\mathbb{Q}) & H^*(X;\mathbb{Q}) \\ \hline \mathbb{\bar{F}}_p & X_p & H\overline{\mathbb{\bar{F}}}_p^X \simeq C^*(X;\overline{\mathbb{\bar{F}}}_p) & H^*(X;\overline{\mathbb{\bar{F}}}_p) \end{array}$$

- ullet Sullivan theory says we can recover $X_{\mathbb Q}$ from the E_{∞} algebra $H{\mathbb Q}^X.$
- Only get $H^*(X;\mathbb{Q}) \in \mathbb{Q}$ -CAlg.
- ullet Mandell's theory says we can recover X_p from the E_∞ -algebra $H\overline{\mathbb{F}}_n^X$.
- Only get $H^*(X; \overline{\mathbb{F}}_p)$ as an unstable algebra over Steenrod algebra.

 $\mathsf{Theorem}\;(\mathsf{Mathew-Naumann-N.})$

Theorem (Mathew-Naumann-N.)

Suppose that R is an H_{∞} -ring spectrum.

Theorem (Mathew-Naumann-N.)

Suppose that R is an H_{∞} -ring spectrum. Suppose that $x \in \pi_*R$ has nilpotent image in

Theorem (Mathew-Naumann-N.)

Suppose that R is an H_{∞} -ring spectrum. Suppose that $x \in \pi_* R$ has nilpotent image in $H_*(R;\mathbb{Q})$

Theorem (Mathew-Naumann-N.)

Suppose that R is an H_{∞} -ring spectrum. Suppose that $x \in \pi_* R$ has nilpotent image in $H_*(R;\mathbb{Q})$ and $H_*(R;\mathbb{F}_p)$ for \forall primes p.

Theorem (Mathew-Naumann-N.)

Suppose that R is an H_{∞} -ring spectrum. Suppose that $x \in \pi_* R$ has nilpotent image in $H_*(R;\mathbb{Q})$ and $H_*(R;\mathbb{F}_p)$ for \forall primes p. Then x is nilpotent.

Theorem (Mathew-Naumann-N.)

Suppose that R is an H_{∞} -ring spectrum. Suppose that $x \in \pi_* R$ has nilpotent image in $H_*(R;\mathbb{Q})$ and $H_*(R;\mathbb{F}_p)$ for \forall primes p. Then x is nilpotent.

Corollary

Theorem (Mathew-Naumann-N.)

Suppose that R is an H_{∞} -ring spectrum. Suppose that $x \in \pi_* R$ has nilpotent image in $H_*(R;\mathbb{Q})$ and $H_*(R;\mathbb{F}_p)$ for \forall primes p. Then x is nilpotent.

Corollary

May's conjecture:

Theorem (Mathew-Naumann-N.)

Suppose that R is an H_{∞} -ring spectrum. Suppose that $x \in \pi_* R$ has nilpotent image in $H_*(R;\mathbb{Q})$ and $H_*(R;\mathbb{F}_p)$ for \forall primes p. Then x is nilpotent.

Corollary

May's conjecture: Suppose that R is an H_{∞} -ring spectrum and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Then x is nilpotent.

Theorem (Mathew-Naumann-N.)

Suppose that R is an H_{∞} -ring spectrum. Suppose that $x \in \pi_* R$ has nilpotent image in $H_*(R;\mathbb{Q})$ and $H_*(R;\mathbb{F}_p)$ for \forall primes p. Then x is nilpotent.

Corollary

May's conjecture: Suppose that R is an H_{∞} -ring spectrum and

$$x \in \ker(\pi_* R \to H_*(R; \mathbb{Z})).$$

Then x is nilpotent.

Theorem (Hopkins-Smith)

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

 \bullet $H_*(R;\mathbb{Q})$

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

- ② $H_*(R; \mathbb{F}_p)$ for \forall primes p

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

- \bullet $H_*(R;\mathbb{Q})$
- **3** and $K(n)_*(R)$ for \forall primes p and n > 0.

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

- \bullet $H_*(R;\mathbb{Q})$
- **3** and $K(n)_*(R)$ for \forall primes p and n > 0.

Then x is nilpotent.

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

- \bullet $H_*(R;\mathbb{Q})$
- **3** and $K(n)_*(R)$ for \forall primes p and n > 0.

Then x is nilpotent.

Theorem (Mathew-Naumann-N.)

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

- \bullet $H_*(R;\mathbb{Q})$
- **3** and $K(n)_*(R)$ for \forall primes p and n > 0.

Then x is nilpotent.

Theorem (Mathew-Naumann-N.)

If R is H_{∞}

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

- \bullet $H_*(R;\mathbb{Q})$
- **3** and $K(n)_*(R)$ for \forall primes p and n > 0.

Then x is nilpotent.

Theorem (Mathew-Naumann-N.)

If R is H_{∞} then condition (1)

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

- \bullet $H_*(R;\mathbb{Q})$
- **3** and $K(n)_*(R)$ for \forall primes p and n > 0.

Then x is nilpotent.

Theorem (Mathew-Naumann-N.)

If R is H_{∞} then condition (1) imply condition (3)

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

- \bullet $H_*(R;\mathbb{Q})$
- **3** and $K(n)_*(R)$ for \forall primes p and n > 0.

Then x is nilpotent.

Theorem (Mathew-Naumann-N.)

If R is H_{∞} then condition (1) imply condition (3) and therefore (1) and (2) imply the main theorem.

Theorem (Hopkins-Smith)

Suppose that R is a ring spectrum and that $x \in \pi_*R$ has nilpotent image in

- \bullet $H_*(R;\mathbb{Q})$
- **3** and $K(n)_*(R)$ for \forall primes p and n > 0.

Then x is nilpotent.

Theorem (Mathew-Naumann-N.)

If R is H_{∞} then condition (1) imply condition (3) and therefore (1) and (2) imply the main theorem.

• Since x has nilpotent image $H_*(R;\mathbb{Q}) \cong \pi_* R \otimes \mathbb{Q}$

• Since x has nilpotent image $H_*(R;\mathbb{Q}) \cong \pi_* R \otimes \mathbb{Q}$, $\exists m \text{ s.t. } x^m$ is torsion.

- Since x has nilpotent image $H_*(R;\mathbb{Q}) \cong \pi_* R \otimes \mathbb{Q}$, $\exists m \text{ s.t. } x^m$ is torsion.
- $y := x^m$ is nilpotent $\iff x$ is nilpotent.

- Since x has nilpotent image $H_*(R;\mathbb{Q}) \cong \pi_* R \otimes \mathbb{Q}$, $\exists m \text{ s.t. } x^m$ is torsion.
- $y := x^m$ is nilpotent $\iff x$ is nilpotent.
- WTS that our torsion y has nilpotent image in $K(n)_*R$.

- Since x has nilpotent image $H_*(R;\mathbb{Q}) \cong \pi_* R \otimes \mathbb{Q}$, $\exists m \text{ s.t. } x^m$ is torsion.
- $y := x^m$ is nilpotent $\iff x$ is nilpotent.
- WTS that our torsion y has nilpotent image in $K(n)_*R$.
- Hurewicz map factors

$$\pi_* R \to \pi_* L_{K(n)}(E_n \wedge R) \to K(n)_*(R).$$

- Since x has nilpotent image $H_*(R;\mathbb{Q}) \cong \pi_* R \otimes \mathbb{Q}$, $\exists m \text{ s.t. } x^m$ is torsion.
- $y := x^m$ is nilpotent $\iff x$ is nilpotent.
- WTS that our torsion y has nilpotent image in $K(n)_*R$.
- Hurewicz map factors

$$\pi_*R \to \pi_*L_{K(n)}(E_n \wedge R) \to K(n)_*(R).$$

• $\operatorname{Im}(y) \in \pi_* L_{K(n)}(E_n \wedge R)$ is nilpotent

- Since x has nilpotent image $H_*(R;\mathbb{Q}) \cong \pi_* R \otimes \mathbb{Q}$, $\exists m \text{ s.t. } x^m$ is torsion.
- $y := x^m$ is nilpotent $\iff x$ is nilpotent.
- WTS that our torsion y has nilpotent image in $K(n)_*R$.
- Hurewicz map factors

$$\pi_*R \to \pi_*L_{K(n)}(E_n \wedge R) \to K(n)_*(R).$$

• $\operatorname{Im}(y) \in \pi_* L_{K(n)}(E_n \wedge R)$ is nilpotent $\Longrightarrow \operatorname{Im}(y) \in K(n)_*(R)$ is nilpotent

Proof of thm

- Since x has nilpotent image $H_*(R;\mathbb{Q}) \cong \pi_* R \otimes \mathbb{Q}$, $\exists m \text{ s.t. } x^m$ is torsion.
- $y := x^m$ is nilpotent $\iff x$ is nilpotent.
- WTS that our torsion y has nilpotent image in $K(n)_*R$.
- Hurewicz map factors

$$\pi_*R \to \pi_*L_{K(n)}(E_n \wedge R) \to K(n)_*(R).$$

• $\operatorname{Im}(y) \in \pi_* L_{K(n)}(E_n \wedge R)$ is nilpotent $\Longrightarrow \operatorname{Im}(y) \in K(n)_*(R)$ is nilpotent \Longrightarrow the main theorem.

Proof of thm

- Since x has nilpotent image $H_*(R;\mathbb{Q}) \cong \pi_* R \otimes \mathbb{Q}$, $\exists m \text{ s.t. } x^m$ is torsion.
- $y := x^m$ is nilpotent $\iff x$ is nilpotent.
- WTS that our torsion y has nilpotent image in $K(n)_*R$.
- Hurewicz map factors

$$\pi_*R \to \pi_*L_{K(n)}(E_n \wedge R) \to K(n)_*(R).$$

• $\operatorname{Im}(y) \in \pi_* L_{K(n)}(E_n \wedge R)$ is nilpotent $\Longrightarrow \operatorname{Im}(y) \in K(n)_*(R)$ is nilpotent \Longrightarrow the main theorem.

• $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.

- $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.
- Assume $y \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^m -torsion.

- $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.
- Assume $y \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^m -torsion.
- We then show that $y^{p+1} \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^{m-1} -torsion.

- $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.
- Assume $y \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^m -torsion.
- We then show that $y^{p+1} \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^{m-1} -torsion.
- So $y^{(p+1)^m} = 0 \in \pi_* L_{K(n)}(E_n \wedge R)$

- $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.
- Assume $y \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^m -torsion.
- We then show that $y^{p+1} \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^{m-1} -torsion.
- So $y^{(p+1)^m} = 0 \in \pi_* L_{K(n)}(E_n \wedge R)$ and the theorem follows.

- $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.
- Assume $y \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^m -torsion.
- We then show that $y^{p+1} \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^{m-1} -torsion.
- So $y^{(p+1)^m} = 0 \in \pi_* L_{K(n)}(E_n \wedge R)$ and the theorem follows.
- Argument uses analogues of ψ/θ -operations

- $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.
- Assume $y \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^m -torsion.
- We then show that $y^{p+1} \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^{m-1} -torsion.
- So $y^{(p+1)^m} = 0 \in \pi_* L_{K(n)}(E_n \wedge R)$ and the theorem follows.
- Argument uses analogues of ψ/θ -operations and the formula:

- \bullet $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.
- Assume $y \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^m -torsion.
- We then show that $y^{p+1} \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^{m-1} -torsion.
- So $y^{(p+1)^m} = 0 \in \pi_* L_{K(n)}(E_n \wedge R)$ and the theorem follows.
- Argument uses analogues of ψ/θ -operations and the formula:

$$y^p = \psi(y) + p\theta(y).$$

- \bullet $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.
- Assume $y \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^m -torsion.
- We then show that $y^{p+1} \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^{m-1} -torsion.
- So $y^{(p+1)^m} = 0 \in \pi_* L_{K(n)}(E_n \wedge R)$ and the theorem follows.
- Argument uses analogues of ψ/θ -operations and the formula:

$$y^p = \psi(y) + p\theta(y).$$

This depends on work of Rezk and Strickland.

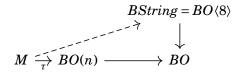
- \bullet $\pi_*L_{K(n)}(E_n \wedge R)$ is p-local.
- Assume $y \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^m -torsion.
- We then show that $y^{p+1} \in \pi_* L_{K(n)}(E_n \wedge R)$ is p^{m-1} -torsion.
- So $y^{(p+1)^m} = 0 \in \pi_* L_{K(n)}(E_n \wedge R)$ and the theorem follows.
- Argument uses analogues of ψ/θ -operations and the formula:

$$y^p = \psi(y) + p\theta(y).$$

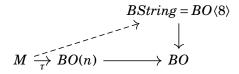
This depends on work of Rezk and Strickland.

Applications to bordism

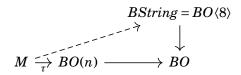
String manifolds



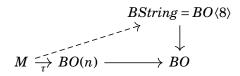
Recall that a String structure on a smooth manifold M is



• Similar definitions for Spin-manifolds, SO-manifolds, ...

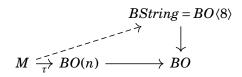


- Similar definitions for Spin-manifolds, SO-manifolds, ...
- $\leadsto E_{\infty}$ Thom spectra MString, MSO, ...



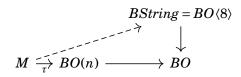
- Similar definitions for Spin-manifolds, SO-manifolds, ...
- $\leadsto E_{\infty}$ Thom spectra MString, MSO, ...
- $\pi_*MString \cong \Omega^*_{String}, \pi_*MSpin \cong \Omega^*_{Spin}...$

Applications to bordism



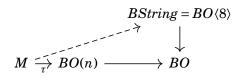
- Similar definitions for *Spin*-manifolds, *SO*-manifolds, ...
- $\leadsto E_{\infty}$ Thom spectra MString, MSO, ...
- $\pi_*MString \cong \Omega^*_{String}, \pi_*MSpin \cong \Omega^*_{Spin}...$
- Forgetful maps:

Recall that a String structure on a smooth manifold M is



- Similar definitions for Spin-manifolds, SO-manifolds, ...
- $\leadsto E_{\infty}$ Thom spectra MString, MSO, ...
- $\pi_*MString \cong \Omega^*_{String}, \pi_*MSpin \cong \Omega^*_{Spin}...$
- Forgetful maps:

MString

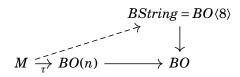


- Similar definitions for Spin-manifolds, SO-manifolds, ...
- $\leadsto E_{\infty}$ Thom spectra MString, MSO, ...
- $\pi_*MString \cong \Omega^*_{String}, \pi_*MSpin \cong \Omega^*_{Spin}...$
- Forgetful maps:

$$MString \rightarrow MSpin$$

Applications to bordism

String manifolds



- Similar definitions for *Spin*-manifolds, *SO*-manifolds, ...
- $\leadsto E_{\infty}$ Thom spectra MString, MSO, ...
- $\pi_*MString \cong \Omega^*_{String}, \pi_*MSpin \cong \Omega^*_{Spin}...$
- Forgetful maps:

$$MString \rightarrow MSpin \rightarrow MSO$$



- Similar definitions for *Spin*-manifolds, *SO*-manifolds, ...
- $\leadsto E_{\infty}$ Thom spectra MString, MSO, ...
- $\pi_*MString \cong \Omega^*_{String}, \pi_*MSpin \cong \Omega^*_{Spin}...$
- Forgetful maps:

$$MString \rightarrow MSpin \rightarrow MSO \rightarrow MO$$

Theorem (Mathew-Naumann-N.)

Theorem (Mathew-Naumann-N.)

Applications to bordism

String bordism

Theorem (Mathew-Naumann-N.)

For a String manifold M. The following are equivalent:

• For $n \gg 0$, $M^{\times n}$ bounds a String manifold.

Applications to bordism

String bordism

Theorem (Mathew-Naumann-N.)

- For $n \gg 0$, $M^{\times n}$ bounds a String manifold.
- M bounds an oriented manifold.

Theorem (Mathew-Naumann-N.)

- For $n \gg 0$, $M^{\times n}$ bounds a String manifold.
- 2 M bounds an oriented manifold.
- 3 The Stiefel-Whitney and Pontryagin numbers of M vanish.

Theorem (Mathew-Naumann-N.)

- For $n \gg 0$, $M^{\times n}$ bounds a String manifold.
- 2 M bounds an oriented manifold.
- The Stiefel-Whitney and Pontryagin numbers of M vanish.
 - $(2) \iff (3)$ is classical.

Theorem (Mathew-Naumann-N.)

- For $n \gg 0$, $M^{\times n}$ bounds a String manifold.
- 2 M bounds an oriented manifold.
- 3 The Stiefel-Whitney and Pontryagin numbers of M vanish.
 - $(2) \iff (3)$ is classical.
 - Claim is equivalent to

$$Nil(\pi_*MString) = \ker(\pi_*MString \to \pi_*MSO).$$

Theorem (Mathew-Naumann-N.)

For a String manifold M. The following are equivalent:

- For $n \gg 0$, $M^{\times n}$ bounds a String manifold.
- 2 M bounds an oriented manifold.
- The Stiefel-Whitney and Pontryagin numbers of M vanish.
 - $(2) \iff (3)$ is classical.
 - Claim is equivalent to

$$Nil(\pi_*MString) = ker(\pi_*MString \rightarrow \pi_*MSO).$$

• We will show these are both are equal to

Theorem (Mathew-Naumann-N.)

For a String manifold M. The following are equivalent:

- For $n \gg 0$, $M^{\times n}$ bounds a String manifold.
- 2 M bounds an oriented manifold.
- The Stiefel-Whitney and Pontryagin numbers of M vanish.
 - $(2) \iff (3)$ is classical.
 - Claim is equivalent to

$$Nil(\pi_*MString) = ker(\pi_*MString \rightarrow \pi_*MSO).$$

• We will show these are both are equal to

$$\ker(\pi_* MString \to H_*(MString; \mathbb{Z})).$$

Theorem (Mathew-Naumann-N.)

For a String manifold M. The following are equivalent:

- For $n \gg 0$, $M^{\times n}$ bounds a String manifold.
- 2 M bounds an oriented manifold.
- **③** The Stiefel-Whitney and Pontryagin numbers of *M* vanish.
 - $(2) \iff (3)$ is classical.
 - Claim is equivalent to

$$Nil(\pi_*MString) = ker(\pi_*MString \rightarrow \pi_*MSO).$$

• We will show these are both are equal to

$$\ker(\pi_*MString \to H_*(MString; \mathbb{Z})).$$

$Nil(\pi_*MString)$

■ May's conjecture ⇒

$Nil(\pi_*MString)$

■ May's conjecture ⇒

 $\ker(\pi_*MString \to H_*(MString; \mathbb{Z})) \subseteq \operatorname{Nil}(\pi_*MString).$

Applications to bordism

■ May's conjecture ⇒

$$\ker(\pi_*MString \to H_*(MString; \mathbb{Z})) \subseteq \operatorname{Nil}(\pi_*MString).$$

Applications to bordism

Always have

$$\operatorname{Im}(\operatorname{Nil}(\pi_*MString)) \subseteq \operatorname{Nil}(H_*(MString; \mathbb{Z})).$$

■ May's conjecture ⇒

$$\ker(\pi_* MString \to H_*(MString; \mathbb{Z})) \subseteq \operatorname{Nil}(\pi_* MString).$$

Always have

$$\operatorname{Im}(\operatorname{Nil}(\pi_*MString)) \subseteq \operatorname{Nil}(H_*(MString; \mathbb{Z})).$$

$$Nil(H_*(MString; \mathbb{Z})) \subseteq Nil(H_*(MSO; \mathbb{Z})) = 0.$$

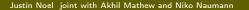
■ May's conjecture ⇒

$$\ker(\pi_* MString \to H_*(MString; \mathbb{Z})) \subseteq \operatorname{Nil}(\pi_* MString).$$

Always have

$$\operatorname{Im}(\operatorname{Nil}(\pi_*MString)) \subseteq \operatorname{Nil}(H_*(MString; \mathbb{Z})).$$

$$Nil(H_*(MString; \mathbb{Z})) \subseteq Nil(H_*(MSO; \mathbb{Z})) = 0.$$



■ May's conjecture ⇒

$$\ker(\pi_* MString \to H_*(MString; \mathbb{Z})) \subseteq \operatorname{Nil}(\pi_* MString).$$

Always have

$$\operatorname{Im}(\operatorname{Nil}(\pi_*MString)) \subseteq \operatorname{Nil}(H_*(MString; \mathbb{Z})).$$

$$Nil(H_*(MString; \mathbb{Z})) \subseteq Nil(H_*(MSO; \mathbb{Z})) = 0.$$

$$\implies \ker(\pi_* MString \to H_*(MString; \mathbb{Z})) = \operatorname{Nil}(\pi_* MString).$$

$$H_*(MString; \mathbb{Z})$$

$$\downarrow$$

$$H_*(MSO; \mathbb{Z})$$

Applications to bordism

$H_*(\overline{MString}; \mathbb{Z})$

$$\pi_*MString \longrightarrow H_*(MString; \mathbb{Z})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi_*MSO \hookrightarrow H_*(MSO; \mathbb{Z})$$

$H_*(\overline{MString}; \mathbb{Z})$

$$\pi_*MString \longrightarrow H_*(MString; \mathbb{Z})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi_*MSO \hookrightarrow H_*(MSO; \mathbb{Z})$$

$$\pi_*MString \longrightarrow H_*(MString; \mathbb{Z})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi_*MSO \hookrightarrow H_*(MSO; \mathbb{Z})$$

$$\implies \ker(\pi_* MString \to \pi_* MSO) = \ker(\pi_* MString \to H_*(MString; \mathbb{Z})).$$

We will show:

$$\pi_*MString \longrightarrow H_*(MString; \mathbb{Z})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_*MSO \hookrightarrow \longrightarrow H_*(MSO; \mathbb{Z})$$

$$\implies \ker(\pi_* MString \to \pi_* MSO) = \ker(\pi_* MString \to H_*(MString; \mathbb{Z})).$$

So want to analyze $H_*(MString; \mathbb{Z})$.

We will show:

$$\pi_*MString \longrightarrow H_*(MString; \mathbb{Z})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_*MSO \hookrightarrow \longrightarrow H_*(MSO; \mathbb{Z})$$

$$\implies \ker(\pi_* MString \to \pi_* MSO) = \ker(\pi_* MString \to H_*(MString; \mathbb{Z})).$$

So want to analyze $H_*(MString; \mathbb{Z})$.

• Have multiplicative isos $H_*(MG;k) \cong H_*(BG;k)$ for G = SO, Spin, String.

Proof of May's conjecture

- Have multiplicative isos $H_*(MG;k) \cong H_*(BG;k)$ for G = SO, Spin, String.
- So we need to analyze $H_*(BG;\mathbb{Z})$

- Have multiplicative isos $H_*(MG;k) \cong H_*(BG;k)$ for G = SO, Spin, String.
- So we need to analyze $H_*(BG;\mathbb{Z})$ and show it is reduced (no nilpotents).

• Have multiplicative isos $H_*(MG;k) \cong H_*(BG;k)$ for G = SO, Spin, String.

Proof of May's conjecture

- So we need to analyze $H_*(BG;\mathbb{Z})$ and show it is reduced (no nilpotents).
- $H_*(BG;\mathbb{Z})$ is fin. gen. in each degree.

- Have multiplicative isos $H_*(MG;k) \cong H_*(BG;k)$ for G = SO, Spin, String.
- So we need to analyze $H_*(BG;\mathbb{Z})$ and show it is reduced (no nilpotents).
- $H_*(BG;\mathbb{Z})$ is fin. gen. in each degree.
- ==

- Have multiplicative isos $H_*(MG;k) \cong H_*(BG;k)$ for G = SO, Spin, String.
- So we need to analyze $H_*(BG;\mathbb{Z})$ and show it is reduced (no nilpotents).
- $H_*(BG;\mathbb{Z})$ is fin. gen. in each degree.
- \implies We can assemble this computation from

Proof of May's conjecture

- Have multiplicative isos $H_*(MG;k) \cong H_*(BG;k)$ for G = SO, Spin, String.
- So we need to analyze $H_*(BG;\mathbb{Z})$ and show it is reduced (no nilpotents).
- $H_*(BG;\mathbb{Z})$ is fin. gen. in each degree.
- \implies We can assemble this computation from

$$H_*(BG; \mathbb{Z}[1/2])$$
 and $H_*(BG; \mathbb{Z}_2)$

- Have multiplicative isos $H_*(MG;k) \cong H_*(BG;k)$ for G = SO, Spin, String.
- So we need to analyze $H_*(BG;\mathbb{Z})$ and show it is reduced (no nilpotents).
- $H_*(BG;\mathbb{Z})$ is fin. gen. in each degree.
- \implies We can assemble this computation from

$$H_*(BG; \mathbb{Z}[1/2])$$
 and $H_*(BG; \mathbb{Z}_2)$

 $H_*(\overline{BString}; \overline{\mathbb{Z}[1/2]})$

 \bullet Serre SS \Longrightarrow

Applications to bordism

$H_*(BString; \mathbb{Z}[1/2])$

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \hookrightarrow H_*(BSpin; \mathbb{Q})$$

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \longrightarrow H_*(BSpin; \mathbb{Q}) \longrightarrow H_*(BSO; \mathbb{Q})$$

Applications to bordism

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \longrightarrow H_*(BSpin; \mathbb{Q}) \longrightarrow H_*(BSO; \mathbb{Q})$$

Moreover these are all polynomial algebras

Applications to bordism

$H_*(BString; \mathbb{Z}[1/2])$

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \longrightarrow H_*(BSpin; \mathbb{Q}) \longrightarrow H_*(BSO; \mathbb{Q})$$

Moreover these are all polynomial algebras, so they are reduced.

Applications to bordism

$H_*(BString; \mathbb{Z}[1/2])$

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \longrightarrow H_*(BSpin; \mathbb{Q}) \longrightarrow H_*(BSO; \mathbb{Q})$$

Moreover these are all polynomial algebras, so they are reduced.

Have retraction

$$KO[1/2] \xrightarrow{\otimes \mathbb{C}} KU[1/2] \xrightarrow{U} KO[1/2].$$

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \longrightarrow H_*(BSpin; \mathbb{Q}) \longrightarrow H_*(BSO; \mathbb{Q})$$

Moreover these are all polynomial algebras, so they are reduced.

Have retraction

$$KO[1/2] \xrightarrow{\otimes \mathbb{C}} KU[1/2] \xrightarrow{U} KO[1/2].$$

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \hookrightarrow H_*(BSpin; \mathbb{Q}) \hookrightarrow H_*(BSO; \mathbb{Q})$$

Moreover these are all polynomial algebras, so they are reduced.

Have retraction

$$KO[1/2] \xrightarrow{\otimes \mathbb{C}} KU[1/2] \xrightarrow{U} KO[1/2].$$

a retraction

$$H_*(BO\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BU\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BO\langle k\rangle; \mathbb{Z}[1/2]).$$

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \hookrightarrow H_*(BSpin; \mathbb{Q}) \hookrightarrow H_*(BSO; \mathbb{Q})$$

Moreover these are all polynomial algebras, so they are reduced.

Have retraction

$$KO[1/2] \xrightarrow{\otimes \mathbb{C}} KU[1/2] \xrightarrow{U} KO[1/2].$$

a retraction

$$H_*(BO\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BU\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BO\langle k\rangle; \mathbb{Z}[1/2]).$$

Work of Hovey-Ravenel ⇒

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \hookrightarrow H_*(BSpin; \mathbb{Q}) \hookrightarrow H_*(BSO; \mathbb{Q})$$

Moreover these are all polynomial algebras, so they are reduced.

Have retraction

$$KO[1/2] \xrightarrow{\otimes \mathbb{C}} KU[1/2] \xrightarrow{U} KO[1/2].$$

⇒ a retraction

$$H_*(BO\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BU\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BO\langle k\rangle; \mathbb{Z}[1/2]).$$

• Work of Hovey-Ravenel \implies for $k \leq 8$, $H_*(BU\langle k \rangle; \mathbb{Z}[1/2])$ is torsion free.

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \longrightarrow H_*(BSpin; \mathbb{Q}) \longrightarrow H_*(BSO; \mathbb{Q})$$

Applications to bordism

Moreover these are all polynomial algebras, so they are reduced.

Have retraction

$$KO[1/2] \xrightarrow{\otimes \mathbb{C}} KU[1/2] \xrightarrow{U} KO[1/2].$$

⇒ a retraction

$$H_*(BO\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BU\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BO\langle k\rangle; \mathbb{Z}[1/2]).$$

- Work of Hovey-Ravenel \implies for $k \leq 8$, $H_*(BU\langle k \rangle; \mathbb{Z}[1/2])$ is torsion free.

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \longrightarrow H_*(BSpin; \mathbb{Q}) \longrightarrow H_*(BSO; \mathbb{Q})$$

Moreover these are all polynomial algebras, so they are reduced.

Have retraction

$$KO[1/2] \xrightarrow{\otimes \mathbb{C}} KU[1/2] \xrightarrow{U} KO[1/2].$$

⇒ a retraction

$$H_*(BO\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BU\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BO\langle k\rangle; \mathbb{Z}[1/2]).$$

- Work of Hovey-Ravenel \implies for $k \leq 8$, $H_*(BU\langle k \rangle; \mathbb{Z}[1/2])$ is torsion free.
- \Longrightarrow For $k \leq 8$, $H_*(BO(k); \mathbb{Z}[1/2])$ is torsion free.

• Serre SS \Longrightarrow

$$H_*(BString; \mathbb{Q}) \longrightarrow H_*(BSpin; \mathbb{Q}) \longrightarrow H_*(BSO; \mathbb{Q})$$

Moreover these are all polynomial algebras, so they are reduced.

Have retraction

$$KO[1/2] \xrightarrow{\otimes \mathbb{C}} KU[1/2] \xrightarrow{U} KO[1/2].$$

⇒ a retraction

$$H_*(BO\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BU\langle k\rangle; \mathbb{Z}[1/2]) \to H_*(BO\langle k\rangle; \mathbb{Z}[1/2]).$$

- Work of Hovey-Ravenel \implies for $k \leq 8$, $H_*(BU\langle k \rangle; \mathbb{Z}[1/2])$ is torsion free.
- \Longrightarrow For $k \leq 8$, $H_*(BO(k); \mathbb{Z}[1/2])$ is torsion free.

Stong's calculations ⇒

Stong's calculations ⇒

$$H_*(BO; \mathbb{F}_2) \longleftrightarrow H_*(BSO; \mathbb{F}_2)$$

Applications to bordism

$H_*(\overline{BString}; \mathbb{Z}_2)$

Stong's calculations ⇒

Applications to bordism

Applications to bordism

 \bullet Stong's calculations \Longrightarrow

$$H_*(BString; \mathbb{F}_2) \longrightarrow H_*(BSpin; \mathbb{F}_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad H_*(BO; \mathbb{F}_2) \longleftrightarrow H_*(BSO; \mathbb{F}_2)$$

Stong's calculations ⇒

$$H_*(BString; \mathbb{F}_2) \longrightarrow H_*(BSpin; \mathbb{F}_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad H_*(BO; \mathbb{F}_2) \longleftrightarrow H_*(BSO; \mathbb{F}_2)$$

⇒ these homology rings are reduced (no nilpotents).

Stong's calculations ⇒

$$H_*(BString; \mathbb{F}_2) \longrightarrow H_*(BSpin; \mathbb{F}_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad H_*(BO; \mathbb{F}_2) \longleftrightarrow H_*(BSO; \mathbb{F}_2)$$

⇒ these homology rings are reduced (no nilpotents).

The Bockstein SS

$$H_*(BSO; \mathbb{F}_2) \otimes \mathbb{F}_2[v_0] \Longrightarrow H_*(BSO; \mathbb{Z}_2)$$

Stong's calculations ⇒

$$H_*(BString; \mathbb{F}_2) \longrightarrow H_*(BSpin; \mathbb{F}_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad H_*(BO; \mathbb{F}_2) \longleftrightarrow H_*(BSO; \mathbb{F}_2)$$

⇒ these homology rings are reduced (no nilpotents).

The Bockstein SS

$$H_*(BSO; \mathbb{F}_2) \otimes \mathbb{F}_2[v_0] \Longrightarrow H_*(BSO; \mathbb{Z}_2)$$

collapses at E_2

Stong's calculations ⇒

$$H_*(BString; \mathbb{F}_2) \longrightarrow H_*(BSpin; \mathbb{F}_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad H_*(BO; \mathbb{F}_2) \longleftrightarrow H_*(BSO; \mathbb{F}_2)$$

⇒ these homology rings are reduced (no nilpotents).

The Bockstein SS

$$H_*(BSO; \mathbb{F}_2) \otimes \mathbb{F}_2[v_0] \Longrightarrow H_*(BSO; \mathbb{Z}_2)$$

collapses at $E_2 \iff$ (all 2-torsion is simple).

Stong's calculations ⇒

$$H_*(BString; \mathbb{F}_2) \longrightarrow H_*(BSpin; \mathbb{F}_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad H_*(BO; \mathbb{F}_2) \longleftrightarrow H_*(BSO; \mathbb{F}_2)$$

⇒ these homology rings are reduced (no nilpotents).

The Bockstein SS

$$H_*(BSO; \mathbb{F}_2) \otimes \mathbb{F}_2[v_0] \Longrightarrow H_*(BSO; \mathbb{Z}_2)$$

collapses at $E_2 \iff$ (all 2-torsion is simple).

Stong's calculations ⇒

$$H_*(BString; \mathbb{F}_2) \longrightarrow H_*(BSpin; \mathbb{F}_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad H_*(BO; \mathbb{F}_2) \longleftrightarrow H_*(BSO; \mathbb{F}_2)$$

⇒ these homology rings are reduced (no nilpotents).

The Bockstein SS

$$H_*(BSO; \mathbb{F}_2) \otimes \mathbb{F}_2[v_0] \Longrightarrow H_*(BSO; \mathbb{Z}_2)$$

collapses at $E_2 \iff$ (all 2-torsion is simple).

 $\bullet \implies$ the BSSs for BString and BSpin collapse at E_2 .

Stong's calculations ⇒

$$H_*(BString; \mathbb{F}_2) \longrightarrow H_*(BSpin; \mathbb{F}_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad H_*(BO; \mathbb{F}_2) \longleftrightarrow H_*(BSO; \mathbb{F}_2)$$

⇒ these homology rings are reduced (no nilpotents).

The Bockstein SS

$$H_*(BSO; \mathbb{F}_2) \otimes \mathbb{F}_2[v_0] \Longrightarrow H_*(BSO; \mathbb{Z}_2)$$

collapses at $E_2 \iff$ (all 2-torsion is simple).

 $\bullet \implies$ the BSSs for BString and BSpin collapse at E_2 .

$H_*(\overline{BString}; \mathbb{Z})$

Proposition

 $H_*(BString; \mathbb{Z}), H_*(BSpin; \mathbb{Z}), H_*(BSO; \mathbb{Z})$ have only simple 2-torsion.

$H_*(\overline{BString};\mathbb{Z})$

Proposition

 $H_*(BString; \mathbb{Z}), H_*(BSpin; \mathbb{Z}), H_*(BSO; \mathbb{Z})$ have only simple 2-torsion.

$$H_*(BSO; \mathbb{Z}) \hookrightarrow H_*(BSO; \mathbb{F}_2) \times H_*(BSO; \mathbb{Q})$$

Proposition

 $H_*(BString; \mathbb{Z}), H_*(BSpin; \mathbb{Z}), H_*(BSO; \mathbb{Z})$ have only simple 2-torsion.

Proposition

 $H_*(BString; \mathbb{Z}), H_*(BSpin; \mathbb{Z}), H_*(BSO; \mathbb{Z})$ have only simple 2-torsion.

$$H_*(BString; \mathbb{Z}) \longleftrightarrow H_*(BString; \mathbb{F}_2) \times H_*(BString; \mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_*(BSpin; \mathbb{Z}) \longleftrightarrow H_*(BSpin; \mathbb{F}_2) \times H_*(BSpin; \mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$H_*(BSO; \mathbb{Z}) \longleftrightarrow H_*(BSO; \mathbb{F}_2) \times H_*(BSO; \mathbb{Q})$$

Proposition

 $H_*(BString; \mathbb{Z}), H_*(BSpin; \mathbb{Z}), H_*(BSO; \mathbb{Z})$ have only simple 2-torsion.

Proposition

 $H_*(BString; \mathbb{Z}), H_*(BSpin; \mathbb{Z}), H_*(BSO; \mathbb{Z})$ have only simple 2-torsion.

Applications to bordism

$\pi_*MString$

Lemma (Mathew-Naumann-N.)

To summarize there is a commutative diagram:

Lemma (Mathew-Naumann-N.)

To summarize there is a commutative diagram:

Lemma (Mathew-Naumann-N.)

To summarize there is a commutative diagram:

$$\pi_*MString \longrightarrow H_*(MString; \mathbb{Z}) \hookrightarrow H_*(MString; \mathbb{F}_2) \times H_*(MString; \mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_*MSpin \longrightarrow H_*(MSpin; \mathbb{Z}) \hookrightarrow H_*(MSpin; \mathbb{F}_2) \times H_*(MSpin; \mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_*MSO \hookrightarrow H_*(MSO; \mathbb{Z}) \hookrightarrow H_*(MSO; \mathbb{F}_2) \times H_*(MSO; \mathbb{Q})$$

Theorem (Mathew-Naumann-N.)

Lemma (Mathew-Naumann-N.)

To summarize there is a commutative diagram:

$$\pi_*MString \to H_*(MString; \mathbb{Z}) \hookrightarrow H_*(MString; \mathbb{F}_2) \times H_*(MString; \mathbb{Q})$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_*MSpin \longrightarrow H_*(MSpin; \mathbb{Z}) \hookrightarrow H_*(MSpin; \mathbb{F}_2) \times H_*(MSpin; \mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_*MSO \hookrightarrow H_*(MSO; \mathbb{Z}) \hookrightarrow H_*(MSO; \mathbb{F}_2) \times H_*(MSO; \mathbb{Q})$$

Theorem (Mathew-Naumann-N.)

This implies

$$\ker(\pi_* MString \to \pi_* MSO) = \ker(\pi_* MString \to H_*(MString; \mathbb{Z}))$$
$$= \operatorname{Nil}(\pi_* MString).$$

Lemma (Mathew-Naumann-N.)

To summarize there is a commutative diagram:

$$\pi_*MString \to H_*(MString; \mathbb{Z}) \hookrightarrow H_*(MString; \mathbb{F}_2) \times H_*(MString; \mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_*MSpin \longrightarrow H_*(MSpin; \mathbb{Z}) \hookrightarrow H_*(MSpin; \mathbb{F}_2) \times H_*(MSpin; \mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_*MSO \hookrightarrow H_*(MSO; \mathbb{Z}) \hookrightarrow H_*(MSO; \mathbb{F}_2) \times H_*(MSO; \mathbb{Q})$$

Theorem (Mathew-Naumann-N.)

This implies

$$\ker(\pi_* MString \to \pi_* MSO) = \ker(\pi_* MString \to H_*(MString; \mathbb{Z}))$$
$$= \operatorname{Nil}(\pi_* MString).$$

and the result follows.

Lemma (Mathew-Naumann-N.)

To summarize there is a commutative diagram:

$$\pi_*MString \to H_*(MString; \mathbb{Z}) \hookrightarrow H_*(MString; \mathbb{F}_2) \times H_*(MString; \mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_*MSpin \longrightarrow H_*(MSpin; \mathbb{Z}) \hookrightarrow H_*(MSpin; \mathbb{F}_2) \times H_*(MSpin; \mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_*MSO \hookrightarrow H_*(MSO; \mathbb{Z}) \hookrightarrow H_*(MSO; \mathbb{F}_2) \times H_*(MSO; \mathbb{Q})$$

Theorem (Mathew-Naumann-N.)

This implies

$$\ker(\pi_* MString \to \pi_* MSO) = \ker(\pi_* MString \to H_*(MString; \mathbb{Z}))$$
$$= \operatorname{Nil}(\pi_* MString).$$

and the result follows.

• Have similar nilpotence results for Spin-manifolds, U(6)-manifolds, and SU-manifolds.

птиег аррисаціонѕ

- Have similar nilpotence results for Spin-manifolds, $U\langle 6 \rangle$ -manifolds, and SU-manifolds.
- ullet Can deduce differentials in the Adams SS for connective E_{∞} -ring spectra.

- Have similar nilpotence results for Spin-manifolds, $U\langle 6 \rangle$ -manifolds, and SU-manifolds.
- ullet Can deduce differentials in the Adams SS for connective E_{∞} -ring spectra.
- Can show ring spectra such as

- Have similar nilpotence results for Spin-manifolds, $U\langle 6 \rangle$ -manifolds, and SU-manifolds.
- Can deduce differentials in the Adams SS for connective E_{∞} -ring spectra.
- Can show ring spectra such as $BP/(p^3v_n^2), ku/(30\beta^5)$, and tmf/4 do not admit E_{∞} ring structures.

- Have similar nilpotence results for Spin-manifolds, $U\langle 6 \rangle$ -manifolds, and SU-manifolds.
- Can deduce differentials in the Adams SS for connective E_{∞} -ring spectra.
- Can show ring spectra such as $BP/(p^3v_n^2), ku/(30\beta^5)$, and tmf/4 do not admit E_{∞} ring structures.
- Can show 'half' of Quillen's F-isomorphism theorem for Lubin-Tate theories.

On May's conjecture

- Have similar nilpotence results for Spin-manifolds, $U\langle 6 \rangle$ -manifolds, and SU-manifolds.
- ullet Can deduce differentials in the Adams SS for connective E_{∞} -ring spectra.
- Can show ring spectra such as $BP/(p^3v_n^2), ku/(30\beta^5)$, and tmf/4 do not admit E_{∞} ring structures.
- Can show 'half' of Quillen's F-isomorphism theorem for Lubin-Tate theories.
- We have since generalized this, with an independent argument, to general complex oriented cohomology theories for finite p-groups.

On May's conjecture

- Have similar nilpotence results for Spin-manifolds, $U\langle 6 \rangle$ -manifolds, and SU-manifolds.
- ullet Can deduce differentials in the Adams SS for connective E_{∞} -ring spectra.
- Can show ring spectra such as $BP/(p^3v_n^2), ku/(30\beta^5)$, and tmf/4 do not admit E_{∞} ring structures.
- Can show 'half' of Quillen's F-isomorphism theorem for Lubin-Tate theories.
- We have since generalized this, with an independent argument, to general complex oriented cohomology theories for finite p-groups.

End

Thank you for your attention!