Equivariant cohomology and moduli spaces of maps

Justin Noel

University of Bonn

Max Planck Institute for Mathematics

May 30, 2012

 $\pi_*Map(X,Y)$

Two projects and why you should care

• Equivariant (co)homology of representation spheres.

 $\pi_*Map(X,Y)$

Two projects and why you should care

- Equivariant (co)homology of representation spheres.
 - First computations for non-abelian groups.

Two projects and why you should care

- Equivariant (co)homology of representation spheres.
 - First computations for non-abelian groups.
 - $\pi_{\star}H\mathbb{Z}$

Two projects and why you should care

- Equivariant (co)homology of representation spheres.
 - First computations for non-abelian groups.
 - $\pi_{\star}H\mathbb{Z}$
 - Fun!

Two projects and why you should care

- Equivariant (co)homology of representation spheres.
 - First computations for non-abelian groups.
 - $\pi_{\star}H\mathbb{Z}$
 - Fun!
- Moduli spaces of maps of algebras.

 $_{\star}H\mathbb{Z}$

Two projects and why you should care

- Equivariant (co)homology of representation spheres.
 - First computations for non-abelian groups.
 - $\pi_{\star}H\mathbb{Z}$
 - Fun!
- Moduli spaces of maps of algebras.
 - Construct a computational framework for standard questions.

Two projects and why you should care

- Equivariant (co)homology of representation spheres.
 - First computations for non-abelian groups.
 - π_⋆H<u>Z</u>
 - Fun!
- Moduli spaces of maps of algebras.
 - Construct a computational framework for standard questions.
 - Reprove many classic results.

Two projects and why you should care

- Equivariant (co)homology of representation spheres.
 - First computations for non-abelian groups.
 - $\pi_{\star}H\mathbb{Z}$
 - Fun!
- Moduli spaces of maps of algebras.
 - Construct a computational framework for standard questions.
 - Reprove many classic results.
 - Construct new counterexamples.

 $_{\star}H\mathbb{Z}$

Two projects and why you should care

- Equivariant (co)homology of representation spheres.
 - First computations for non-abelian groups.
 - $\pi_{\star}H\mathbb{Z}$
 - Fun!
- Moduli spaces of maps of algebras.
 - Construct a computational framework for standard questions.
 - Reprove many classic results.
 - Construct new counterexamples.
 - Surprise connection to rational homotopy theory.

 $\pi_* H \mathbb{Z}$ $\pi_* Map(X, Y)$

Representation spheres

 \bullet Let G be a finite group.

 $\pi_* H$ Z $\pi_* Map(X,Y)$

Representation spheres

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \circlearrowleft G$.

 $\pi_* Map(X,Y)$

Representation spheres

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \circlearrowleft G$.
- Here is a picture of the unit disc of the standard representation of C_5 .

 $\pi_{\star}HZ$ $\pi_{\star}Map(X,Y)$

Representation spheres

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \circlearrowleft G$.
- Here is a picture of the unit disc of the standard representation of C_5 .

 $\pi_{\star}HZ$ $\pi_{\star}Map(X,Y)$

Representation spheres

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \circlearrowleft G$.
- Here is a picture of the unit disc of the standard representation of C_5 .

 $\pi_* Map(X,Y)$

Representation spheres

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \circlearrowleft G$.
- Here is a picture of the unit disc of the standard representation of C_5 .

 $\pi_* Map(X,Y)$

Representation spheres

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \circlearrowleft G$.
- Here is a picture of the unit disc of the standard representation of C_5 .

 $\pi_{\star}HZ$ $\pi_{\star}Map(X,Y)$

Representation spheres

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \circlearrowleft G$.
- Here is a picture of the unit disc of the standard representation of C_5 .

 $\pi_* Map(X,Y)$

Representation spheres

- Let G be a finite group.
- Take an orthogonal G representation $V = \mathbb{R}^n \circlearrowleft G$.
- Here is a picture of the unit disc of the standard representation of C_5 .

 $\pi_* H \mathbb{Z}$

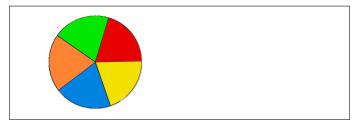
G-CW structure

ullet To construct S^V , collapse the boundary of the unit disc in V to a point.

 $\pi_* Map(X,Y)$

G-CW structure

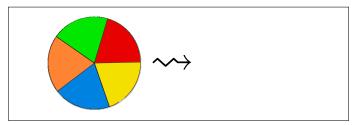
ullet To construct S^V , collapse the boundary of the unit disc in V to a point.



 $\pi_* Map(X,Y)$

G-CW structure

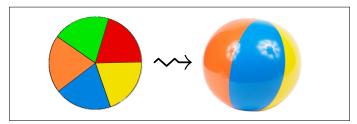
ullet To construct S^V , collapse the boundary of the unit disc in V to a point.



 $\pi_* H \mathbb{Z}$

G-CW structure

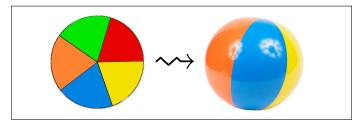
ullet To construct S^V , collapse the boundary of the unit disc in V to a point.



 $\pi_* H \mathbb{Z}$

G-CW structure

ullet To construct S^V , collapse the boundary of the unit disc in V to a point.

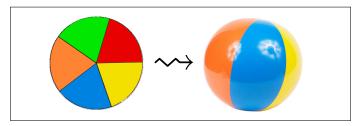


• Construct a CW-decomposition on S^V , such that G takes cells to cells while never mapping a cell in a non-trivial way to itself.

 $\pi_{\star}H\mathbb{Z}$ $\pi_*Map(X,Y)$

G-CW structure

ullet To construct S^V , collapse the boundary of the unit disc in V to a point.



- Construct a CW-decomposition on S^V , such that G takes cells to cells while never mapping a cell in a non-trivial way to itself.
- For example, the color slices above.

 $\pi_* H \mathbb{Z}$ $\pi_* Map(X, Y)$

Cellular homology

ullet Given a CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of }X\}$$

 $\pi_* H \mathbb{Z}$ $\pi_* Map(X, Y)$

Cellular homology

ullet Given a CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of }X\}$$

 $\widetilde{C}_0(X) := \ker(C_0(X) \to C_0(*))$

Cellular homology

ullet Given a CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of }X\}$$

 $\widetilde{C}_0(X) := \ker(C_0(X) \to C_0(*))$

$$\bullet \ H_*(X) \cong \left[\cdots C_{i+1}(X) \xrightarrow{\partial} C_i(X) \xrightarrow{\partial} C_{i-1}(X) \cdots \xrightarrow{\partial} \widetilde{C}_0(X) \right]$$

 $\pi_* Map(X,Y)$

Cellular homology

ullet Given a CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of }X\}$$

 $\widetilde{C}_0(X) := \ker(C_0(X) \to C_0(*))$

- $H_*(X) \cong \left[\cdots C_{i+1}(X) \xrightarrow{\partial} C_i(X) \xrightarrow{\partial} C_{i-1}(X) \cdots \xrightarrow{\partial} \widetilde{C}_0(X) \right]$
- $H^*(X)$ is calculated by taking the linear dual of this complex and then taking cohomology.

 $\pi_* H \mathbb{Z}$ $\pi_* Map(X, Y)$

Bredon homology

• Given a G-CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of }X\} \circlearrowleft G.$$

 $\pi_* H \mathbb{Z}$

Bredon homology

• Given a G-CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of }X\} \circlearrowleft G.$$

• For a subgroup $K \leq G$, let $C_i^K(X) \subset C_i(X)$ be the subgroup of K-invariant chains.

Bredon homology

• Given a G-CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of }X\} \circlearrowleft G.$$

• For a subgroup $K \leq G$, let $C_i^K(X) \subset C_i(X)$ be the subgroup of K-invariant chains.

$$\bullet \ H^K_*(X) \cong \left[\cdots C^K_{i+1}(X) \xrightarrow{\partial} C^K_i(X) \xrightarrow{\partial} C^K_{i-1}(X) \cdots \xrightarrow{\partial} \widetilde{C}^K_0(X) \right]$$

Bredon homology

• Given a G-CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of }X\} \circlearrowleft G.$$

- For a subgroup $K \leq G$, let $C_i^K(X) \subset C_i(X)$ be the subgroup of K-invariant chains.
- $H_*^K(X) \cong \left[\cdots C_{i+1}^K(X) \xrightarrow{\partial} C_i^K(X) \xrightarrow{\partial} C_{i-1}^K(X) \cdots \xrightarrow{\partial} \widetilde{C}_0^K(X) \right]$
- When K is the trivial subgroup: $H_*^K(X) \cong H_*(X)$.

Bredon homology

 $\pi \star H\mathbb{Z}$

• Given a G-CW-complex X let

$$C_i(X) := \mathbb{Z}\{i\text{-cells of }X\} \circlearrowleft G.$$

- For a subgroup $K \leq G$, let $C_i^K(X) \subset C_i(X)$ be the subgroup of K-invariant chains.
- $H_*^K(X) \cong \left[\cdots C_{i+1}^K(X) \xrightarrow{\partial} C_i^K(X) \xrightarrow{\partial} C_{i-1}^K(X) \cdots \xrightarrow{\partial} \widetilde{C}_0^K(X) \right]$
- When K is the trivial subgroup: $H_*^K(X) \cong H_*(X)$.
- For cohomology first take the invariants on the cochains.

 $\pi_* H \mathbb{Z}$

Method of computation

• Fix a finite group *G* and determine explicit models for all of the irreducible *real* representations of *G*.

 $\pi_* H \mathbb{Z}$

Method of computation

- Fix a finite group G and determine explicit models for all of the irreducible *real* representations of G.
- Construct an explicit *G*-CW decomposition on each irreducible representation sphere.

 $\pi_* H \mathbb{Z}$

Method of computation

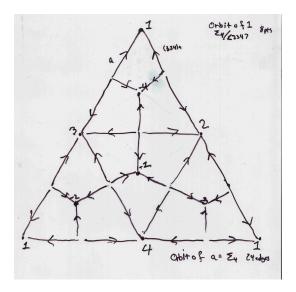
- Fix a finite group G and determine explicit models for all of the irreducible *real* representations of G.
- Construct an explicit *G*-CW decomposition on each irreducible representation sphere.
- Compute $H_*^G(S^V)$ and $H_G^*(S^V)$.

 $\pi_* H \mathbb{Z}$

Method of computation

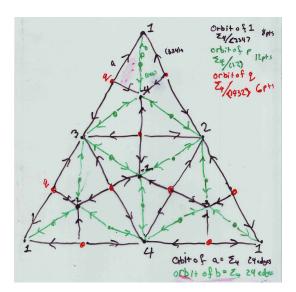
- Fix a finite group G and determine explicit models for all of the irreducible *real* representations of G.
- Construct an explicit *G*-CW decomposition on each irreducible representation sphere.
- ullet Compute $H^G_*(S^V)$ and $H^*_G(S^V)$.
- Assemble the computations to compute $H^G_*(S^{V \oplus W})$.

Twisted tetrahedral representation of Σ_4

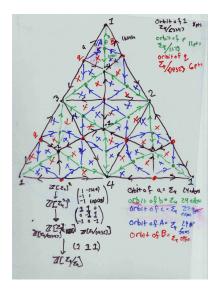


 $\pi_* H\mathbb{Z}$ $\pi_* Map(X,Y)$

Twisted tetrahedral representation of Σ_4



Twisted tetrahedral representation of Σ_4



Assembling the computation

 Our main tool for computing the (co)homology of reducible representations involves an equivariant Atiyah-Hirzebruch spectral sequence.

 $\pi_* H \mathbb{Z}$

Assembling the computation

- Our main tool for computing the (co)homology of reducible representations involves an equivariant Atiyah-Hirzebruch spectral sequence.
- The functor

$$X \mapsto H^G_*(S^W \wedge X)$$

is our generalized equivariant homology theory.

Assembling the computation

- Our main tool for computing the (co)homology of reducible representations involves an equivariant Atiyah-Hirzebruch spectral sequence.
- The functor

$$X \mapsto H^G_*(S^W \wedge X)$$

is our generalized equivariant homology theory.

•

 $\pi \star H\mathbb{Z}$

$$E^1_{*,*} = {}^{\iota}H_*(S^W) \otimes C_*X' \Longrightarrow H^G_*(S^W \wedge X).$$

Tricks for computation

• (Reverse induction) If V is the pullback of a representation of G/H, then use previous computation.

 $\pi_* H \mathbb{Z}$

Tricks for computation

- (Reverse induction) If V is the pullback of a representation of G/H, then use previous computation.
- (Reciprocity) Use the formula

$$S^W \wedge \operatorname{Ind}_H^G S^i \cong \operatorname{Ind}_H^G \left(\operatorname{Res}_H^G (S^W) \wedge S^i \right)$$

to simplify E_1 .

Tricks for computation

- (Reverse induction) If V is the pullback of a representation of G/H, then use previous computation.
- (Reciprocity) Use the formula

$$S^W \wedge \operatorname{Ind}_H^G S^i \cong \operatorname{Ind}_H^G \left(\operatorname{Res}_H^G (S^W) \wedge S^i \right)$$

to simplify E_1 .

(Functoriality) Use subgroup functoriality to determine the differentials.

 $\pi_* H \mathbb{Z}$

Tricks for computation

- (Reverse induction) If V is the pullback of a representation of G/H, then use previous computation.
- (Reciprocity) Use the formula

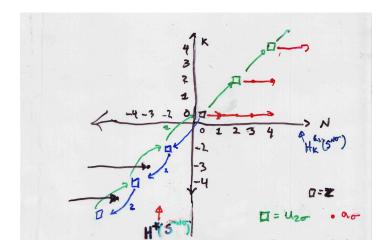
$$S^W \wedge \operatorname{Ind}_H^G S^i \cong \operatorname{Ind}_H^G \left(\operatorname{Res}_H^G (S^W) \wedge S^i \right)$$

to simplify E_1 .

- (Functoriality) Use subgroup functoriality to determine the differentials.
- (Competing computations) Decompose the representation in different ways.

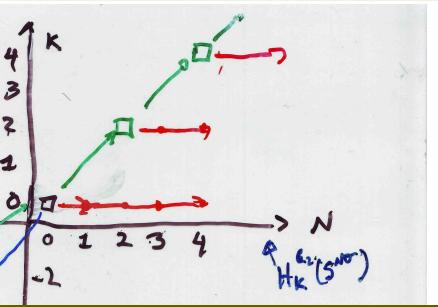
 $\pi_*H\mathbb{Z}$ $\pi_*Map(X,Y)$

Computations for $G = C_2$

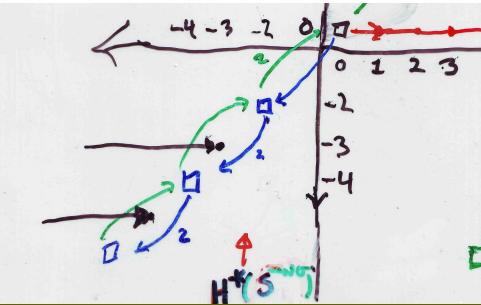


 π_*HZ $\pi_*Map(X,Y)$

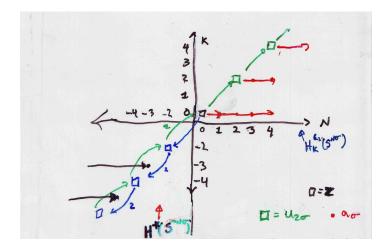
Computations for $G = C_2$



Computations for $G = C_2$



Computations for $G = C_2$



Summary

• We can also determine explicit models for the irreducible real representations of C_n , D_n , A_4 , and S_4 .

Summary

- We can also determine explicit models for the irreducible real representations of C_n , D_n , A_4 , and S_4 .
- We can compute the homology and cohomology of these representation spheres.

 $\pi_*H\mathbb{Z}$ $\pi_*Map(X,Y)$

Summary

- We can also determine explicit models for the irreducible real representations of C_n , D_n , A_4 , and S_4 .
- We can compute the homology and cohomology of these representation spheres.
- Calculating H^G_{*}(S^{V⊕W}) is generally difficult due to complications in the spectral sequence.

 $\pi_*H\mathbb{Z}$ $\pi_*Map(X,Y)$

Summary

• We can also determine explicit models for the irreducible real representations of C_n , D_n , A_4 , and S_4 .

- We can compute the homology and cohomology of these representation spheres.
- Calculating $H^G_*(S^{V \oplus W})$ is generally difficult due to complications in the spectral sequence.
- There is still plenty of other computations left to do.

 $\pi_* H\mathbb{Z}$

Spaces of maps

Goal

Construct tools for determining $\pi_*\mathscr{C}_T(X,Y)$.

Spaces of maps

Goal

Construct tools for determining $\pi_*\mathscr{C}_T(X,Y)$.

 $m{\cdot}$ is some category where there is a space of maps between two objects.

Spaces of maps

Goal

Construct tools for determining $\pi_*\mathscr{C}_T(X,Y)$.

- \mathscr{C}_T will be some subcategory whose objects have some additional structure and maps preserve this structure.

Spaces of maps

Goal

Construct tools for determining $\pi_*\mathscr{C}_T(X,Y)$.

- e is some category where there is a space of maps between two objects.
- \mathscr{C}_T will be some subcategory whose objects have some additional structure and maps preserve this structure.

To clarify we will consider two examples;

Spaces of maps

Goal

Construct tools for determining $\pi_*\mathscr{C}_T(X,Y)$.

- \mathscr{C}_T will be some subcategory whose objects have some additional structure and maps preserve this structure.

To clarify we will consider two examples; one topological

Spaces of maps

Goal

Construct tools for determining $\pi_*\mathscr{C}_T(X,Y)$.

- \mathscr{C}_T will be some subcategory whose objects have some additional structure and maps preserve this structure.

To clarify we will consider two examples; one topological, one algebraic.

First examples

• Consider the functor $X \mapsto \Omega X := \mathcal{T}op_*(S^1, X)$.

First examples

• Consider the functor $X \mapsto \Omega X := \mathcal{T}op_*(S^1, X)$.

Question

Given a map $f \in Top_{\downarrow}(\Omega X, \Omega Y)$ is $f \sim \Omega g$?

First examples

• Consider the functor $X \mapsto \Omega X := Top_*(S^1, X)$.

Question

Given a map $f \in Top_*(\Omega X, \Omega Y)$ is $f \sim \Omega g$?

• Suppose A_* and B_* are CDGA's over k (char k=0).

First examples

• Consider the functor $X \mapsto \Omega X := \mathcal{T}op_*(S^1, X)$.

Question

Given a map $f \in Top_{\pi}(\Omega X, \Omega Y)$ is $f \sim \Omega g$?

• Suppose A_* and B_* are CDGA's over k (char k = 0).

Question

Given a map $f \in \mathcal{DG}\text{-}\mathcal{M}od\ (A_*,B_*)$ is $f \sim g$ where g is a map of CDGA's?

First obstructions (Loop spaces)

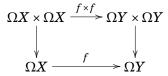
ullet Regard ΩX as a monoid by concatenating loops.

First obstructions (Loop spaces)

- \bullet Regard ΩX as a monoid by concatenating loops.
- A loop map will always commute with this product structure.

First obstructions (Loop spaces)

- Regard ΩX as a monoid by concatenating loops.
- A loop map will always commute with this product structure.
- In particular, the following diagram will commute in the homotopy category of based spaces:



First obstructions (Loop spaces)

- Regard ΩX as a monoid by concatenating loops.
- A loop map will always commute with this product structure.
- In particular, the following diagram will commute in the homotopy category of based spaces:

$$\Omega X \times \Omega X \xrightarrow{f \times f} \Omega Y \times \Omega Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega X \xrightarrow{f} \Omega Y$$

• Such a map is called an H-map.

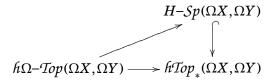
First obstructions (Loop spaces)

• We have the following diagram of forgetful functors:

$$h\Omega$$
- $Top(\Omega X, \Omega Y) \longrightarrow hTop_*(\Omega X, \Omega Y)$

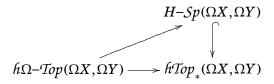
First obstructions (Loop spaces)

• We have the following diagram of forgetful functors:



First obstructions (Loop spaces)

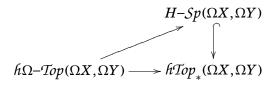
• We have the following diagram of forgetful functors:



 The first obstruction to lifting f to a loop map is to see if it lifts to an H-map.

First obstructions (Loop spaces)

• We have the following diagram of forgetful functors:



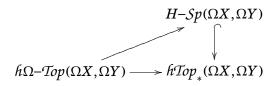
 The first obstruction to lifting f to a loop map is to see if it lifts to an H-map.

Question

Are there other obstructions to lifting f to a loop map?

First obstructions (Loop spaces)

• We have the following diagram of forgetful functors:



 The first obstruction to lifting f to a loop map is to see if it lifts to an H-map.

Question

Are there other obstructions to lifting f to a loop map?Or does this suffice?

First obstructions (CDGAs)

• What are the corresponding notions in the world of CDGAs?

First obstructions (CDGAs)

- What are the corresponding notions in the world of CDGAs?
- Note $hDG-Mod(A_*,B_*) \cong Mod_k(H_*A,H_*B)$.

 $_{\star}H\mathbb{Z}$

First obstructions (CDGAs)

- What are the corresponding notions in the world of CDGAs?
- Note $hDG-Mod(A_*,B_*) \cong Mod_k(H_*A,H_*B)$.
- The homology of a CDGA is always a graded commutative algebra.

First obstructions (CDGAs)

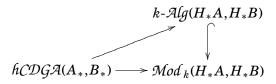
- What are the corresponding notions in the world of CDGAs?
- Note $hDG-Mod(A_*,B_*) \cong Mod_k(H_*A,H_*B)$.
- The homology of a CDGA is always a graded commutative algebra.
- The H-map analogue is a map $f \in k$ - $\mathcal{A}lg(H_*A, H_*B)$.

First obstructions (CDGAs)

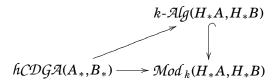
• We have the following diagram of forgetful functors:

$$hCDGA(A_*,B_*) \longrightarrow Mod_k(H_*A,H_*B)$$

• We have the following diagram of forgetful functors:

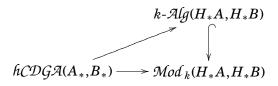


• We have the following diagram of forgetful functors:



 The first obstruction to lifting f to a map of CDGAs is to see if it lifts to a commutative ring map on homology.

• We have the following diagram of forgetful functors:

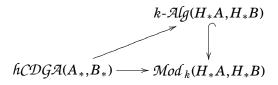


 The first obstruction to lifting f to a map of CDGAs is to see if it lifts to a commutative ring map on homology.

Question

Are there other obstructions to lifting f to a map of CDGAs?

• We have the following diagram of forgetful functors:



 The first obstruction to lifting f to a map of CDGAs is to see if it lifts to a commutative ring map on homology.

Question

Are there other obstructions to lifting f to a map of CDGAs?Or does this suffice?

 $\pi_* H \mathbb{Z}$

Homotopical shadows

• These questions concern whether a map between two objects with structure can be lifted to a map preserving this structure.

Homotopical shadows

- These questions concern whether a map between two objects with structure can be lifted to a map preserving this structure.
- In these cases this structure has some shadow in the homotopy category:

 $_{\star}H\mathbb{Z}$

Homotopical shadows

- These questions concern whether a map between two objects with structure can be lifted to a map preserving this structure.
- In these cases this structure has some shadow in the homotopy category:
- Loop space

 $_{\star}H\mathbb{Z}$

Homotopical shadows

- These questions concern whether a map between two objects with structure can be lifted to a map preserving this structure.
- In these cases this structure has some shadow in the homotopy category:
- Loop space \rightsquigarrow *H*-space (monoid in $hTop_{\perp}$).

Homotopical shadows

- These questions concern whether a map between two objects with structure can be lifted to a map preserving this structure.
- In these cases this structure has some shadow in the homotopy category:
- Loop space \rightsquigarrow *H*-space (monoid in $hTop_*$).
- CDGA

 $_{\star}H\mathbb{Z}$

Homotopical shadows

- These questions concern whether a map between two objects with structure can be lifted to a map preserving this structure.
- In these cases this structure has some shadow in the homotopy category:
- Loop space \rightsquigarrow *H*-space (monoid in $hTop_*$).
- CDGA \rightsquigarrow commutative k-algebra structure in homology.

Spaces of loop maps

Problem in terms of spaces of maps

Compute

$$h\Omega$$
- $Top(\Omega X, \Omega Y) \cong \pi_0\Omega$ - $Top(\Omega X, \Omega Y)$

Spaces of loop maps

Problem in terms of spaces of maps

Compute

$$h\Omega$$
- $Top(\Omega X, \Omega Y) \cong \pi_0 \Omega$ - $Top(\Omega X, \Omega Y)$

and the forgetful map

$$\pi_0\Omega$$
- $Top(\Omega X, \Omega Y) \longrightarrow \pi_0 Top_*(\Omega X, \Omega Y)$

 $H\mathbb{Z}$

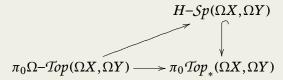
Spaces of loop maps

Problem in terms of spaces of maps

Compute

$$h\Omega$$
- $Top(\Omega X, \Omega Y) \cong \pi_0\Omega$ - $Top(\Omega X, \Omega Y)$

and the forgetful maps



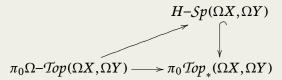
Spaces of loop maps

Problem in terms of spaces of maps

Compute

$$h\Omega$$
- $Top(\Omega X, \Omega Y) \cong \pi_0 \Omega$ - $Top(\Omega X, \Omega Y)$

and the forgetful maps



Is the forgetful functor full or faithful here?

Spaces of algebra maps

Problem in terms of spaces of maps

Compute

$$hCDGA(A_*,B_*) \cong \pi_0CDGA(A_*,B_*)$$

Spaces of algebra maps

Problem in terms of spaces of maps

Compute

$$hCDGA(A_*,B_*) \cong \pi_0CDGA(A_*,B_*)$$

and the forgetful map

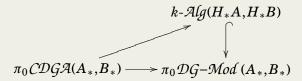
$$\pi_0 CDGA(A_*,B_*) \longrightarrow \pi_0 DG-Mod(A_*,B_*)$$

Problem in terms of spaces of maps

Compute

$$hCDGA(A_*,B_*) \cong \pi_0CDGA(A_*,B_*)$$

and the forgetful maps



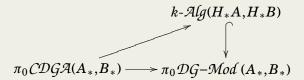
Spaces of algebra maps

Problem in terms of spaces of maps

Compute

$$hCDGA(A_*,B_*) \cong \pi_0CDGA(A_*,B_*)$$

and the forgetful maps



Is the forgetful functor full or faithful here?

 $\pi_*H\mathbb{Z}$

Monads

• Loop spaces are spaces with additional structure.

Monads

- Loop spaces are spaces with additional structure.
- CDGAs are chain complexes with additional structure.

 $\pi_* H \mathbb{Z}$

Monads

- Loop spaces are spaces with additional structure.
- CDGAs are chain complexes with additional structure.
- ullet Both of these structures are examples of T-algebra structures for some monad T.

 $_{\star}$ H $^{\mathbb{Z}}$

Spectral sequence

Theorem (Johnson-Noel)

Under technical hypotheses there is a fringed spectral sequence:

$$E_1^{s,t} \Longrightarrow \pi_{t-s} \mathcal{C}_T(X,Y)$$

Spectral sequence

Theorem (Johnson-Noel)

Under technical hypotheses there is a fringed spectral sequence:

$$E_1^{s,t} \Longrightarrow \pi_{t-s}\mathscr{C}_T(X,Y)$$

such that

 $\pi * Map(X,Y)$

Spectral sequence

Theorem (Johnson-Noel)

Under technical hypotheses there is a fringed spectral sequence:

$$E_1^{s,t} \Longrightarrow \pi_{t-s}\mathscr{C}_T(X,Y)$$

such that

- $E_1^{0,0} \cong h\mathscr{C}(X,Y)$ $E_2^{0,0} \cong (h\mathscr{C})_T(X,Y)$

 $\pi * Map(X,Y)$

Spectral sequence

Theorem (Johnson-Noel)

Under technical hypotheses there is a fringed spectral sequence:

$$E_1^{s,t} \Longrightarrow \pi_{t-s}\mathscr{C}_T(X,Y)$$

such that

- $\begin{array}{ll} \bullet & E_1^{0,0} \cong h\mathscr{C}(X,Y) \\ \bullet & E_2^{0,0} \cong (h\mathscr{C})_T(X,Y) \end{array} \text{ (these correspond to H-maps)}$

Spectral sequence

Theorem (Johnson-Noel)

Under technical hypotheses there is a fringed spectral sequence:

$$E_1^{s,t} \Longrightarrow \pi_{t-s}\mathscr{C}_T(X,Y)$$

such that

- **3** There are a sequence of obstructions

$$d_i(f)\!\in\!E_1^{i,i-1}$$

to lifting $f \in h\mathscr{C}(X,Y)$ to a map of T-algebras.

Spectral sequence

Theorem (Johnson-Noel)

Under technical hypotheses there is a fringed spectral sequence:

$$E_1^{s,t} \Longrightarrow \pi_{t-s}\mathscr{C}_T(X,Y)$$

such that

- (2) $E_2^{\hat{0},0} \cong (h\mathscr{C})_T(X,Y)$ (these correspond to H-maps)
- 3 There are a sequence of obstructions

$$d_i(f) \in E_1^{i,i-1}$$

to lifting $f \in h\mathcal{C}(X,Y)$ to a map of T-algebras.

4 The edge homomorphism

$$\pi_0 \mathscr{C}(X,Y) \to E_2^{0,0} \cong (h\mathscr{C})_T(X,Y)$$

is the previously mentioned forgetful functor.

Spectral sequence

Theorem (Johnson-Noel)

Under technical hypotheses there is a fringed spectral sequence:

$$E_1^{s,t} \Longrightarrow \pi_{t-s}\mathscr{C}_T(X,Y)$$

such that

- $E_2^{0,0} \cong (h\mathscr{C})_T(X,Y)$ (these correspond to H-maps)
- 3 There are a sequence of obstructions

$$d_i(f) \in E_1^{i,i-1}$$

to lifting $f \in h\mathcal{C}(X,Y)$ to a map of T-algebras.

The edge homomorphisms

$$\pi_0 \mathscr{C}(X,Y) \to E_2^{0,0} \cong (h\mathscr{C})_T(X,Y)$$
$$\hookrightarrow E_1^{0,0} \cong h\mathscr{C}(X,Y)$$

are the previously mentioned forgetful functors.

Applications

• This spectral sequence can be applied to the examples above as well as to a host of other problems.

Applications

- This spectral sequence can be applied to the examples above as well as to a host of other problems.
- Most examples come from algebras over operads.

Applications

- This spectral sequence can be applied to the examples above as well as to a host of other problems.
- Most examples come from algebras over operads.
- We can now show that the homotopy category of E_{∞} ring spectra is not equivalent to the category of H_{∞} ring spectra.

Example: Hopf map

 \bullet Each multiple of the Hopf map $S^3 \to S^2$ defines a map of $E_{\infty} \ {\rm rings} \simeq CDGAs$

$$C^*S^2 \to C^*S^3.$$

Example: Hopf map

• Each multiple of the Hopf map $S^3 \to S^2$ defines a map of $E_\infty \ {\rm rings} \simeq CDGAs$

$$C^*S^2 \rightarrow C^*S^3$$
.

• These maps are distinct in $\pi_0 \mathcal{CDGA}(C^*S^2, C^*S^3)$.

Example: Hopf map

• Each multiple of the Hopf map $S^3 \to S^2$ defines a map of $E_\infty \ {\rm rings} \simeq CDGAs$

$$C^*S^2 \rightarrow C^*S^3$$
.

- These maps are distinct in $\pi_0 \mathcal{CDGA}(C^*S^2, C^*S^3)$.
- However each induces the trivial map in

$$k$$
- $\mathcal{A}lg(H^*S^2, H^*S^3) \cong \{\varepsilon\}.$

Example: Hopf map

ullet Each multiple of the Hopf map $S^3 o S^2$ defines a map of $E_\infty \ {
m rings} \simeq CDGAs$

$$C^*S^2 \to C^*S^3$$
.

- These maps are distinct in $\pi_0 \mathcal{CDGA}(C^*S^2, C^*S^3)$.
- However each induces the trivial map in

$$k$$
- $\mathcal{A}lg(H^*S^2, H^*S^3) \cong \{\varepsilon\}.$

ullet This is the first known set of distinct E_{∞} maps which induce the same H_{∞} map.

Example: Heisenberg manifold

• Let *M* be the Heisenberg 3-manifold:

$$\left(\begin{array}{ccc} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{array} \right) / \left(\begin{array}{ccc} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{array} \right)$$

• Let *M* be the Heisenberg 3-manifold:

$$\left(\begin{array}{cccc}
1 & \mathbb{R} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right) \middle/ \left(\begin{array}{cccc}
1 & \mathbb{Z} & \mathbb{Z} \\
0 & 1 & \mathbb{Z} \\
0 & 0 & 1
\end{array}\right)$$

There are infinitely many maps in

$$k$$
-Alg (H^*M, H^*S^2)

Example: Heisenberg manifold

• Let *M* be the Heisenberg 3-manifold:

$$\left(\begin{array}{ccc} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{array}\right) \middle/ \left(\begin{array}{ccc} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{array}\right)$$

There are infinitely many maps in

$$k$$
-Alg (H^*M, H^*S^2)

• but $\pi_0 \mathcal{CDGA}(C^*M, C^*S^2) \cong \{\varepsilon\}$.

Example: Heisenberg manifold

• Let *M* be the Heisenberg 3-manifold:

$$\left(\begin{array}{ccc} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{array}\right) \middle / \left(\begin{array}{ccc} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{array}\right)$$

There are infinitely many maps in

$$k$$
-Alg (H^*M, H^*S^2)

- but $\pi_0 \mathcal{CDGA}(C^*M, C^*S^2) \cong \{\varepsilon\}$.
- ullet This are the first known H_{∞} maps which do not lift to E_{∞} maps.

Connection to rational homotopy theory

These examples arise for a good reason:

```
Theorem (Noel)
```

Connection to rational homotopy theory

These examples arise for a good reason:

Theorem (Noel)

Suppose X and Y are spaces of finite type and Y is nilpotent then

Connection to rational homotopy theory

These examples arise for a good reason:

Theorem (Noel)

Suppose X and Y are spaces of finite type and Y is nilpotent then the natural map

$$Top_*(X, Y_{\mathbb{Q}}) \to E_{\infty}(H\mathbb{Q}^Y, H\mathbb{Q}^X)$$

is an equivalence.

Connection to rational homotopy theory

These examples arise for a good reason:

Theorem (Noel)

Suppose X and Y are spaces of finite type and Y is nilpotent then the natural map

$$Top_*(X, Y_{\mathbb{Q}}) \to E_{\infty}(H\mathbb{Q}^Y, H\mathbb{Q}^X)$$

is an equivalence.

Moreover this map induces an isomorphism between the classical Bousfield-Kan spectral sequence computing the left hand side and the spectral sequence of Johnson-Noel computing the right hand side.

Final summary

 We computed the equivariant homology and cohomology of some representation spheres.

Final summary

- We computed the equivariant homology and cohomology of some representation spheres.
- We derived an obstruction theoretic spectral sequence solving both old problems and some new ones.

 $_{\star}H\mathbb{Z}$

Final summary

- We computed the equivariant homology and cohomology of some representation spheres.
- We derived an obstruction theoretic spectral sequence solving both old problems and some new ones.
- We used this connection to prove a correspondence between unstable rational homotopy theory and E_{∞} ring spectra.

 $_{\star}$ H $^{\mathbb{Z}}$

Final summary

- We computed the equivariant homology and cohomology of some representation spheres.
- We derived an obstruction theoretic spectral sequence solving both old problems and some new ones.
- We used this connection to prove a correspondence between unstable rational homotopy theory and E_{∞} ring spectra.

Thank You!