The T-algebra spectral sequence: Comparisons and applications

Justin Noel

Max Planck Institute for Mathematics

July 31, 2013

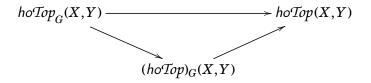
Spectral sequences as organizational tool

- Spectral sequences are not just computational tools, but also a way to carefully study filtrations.
- EHPSS: Unstable homotopy groups ⇒ stable homotopy groups.
- SS is not efficient for computing π_*S .
- Filtration info \rightsquigarrow where stable stems are born.
- Does $f: S^{n+k} \to S^n$ lift to non-trivial $[f] \in \pi_k S$?
- If not, what is the obstruction?
- Differentials give obstructions to stability.

Genera

Lifting maps of G-spaces

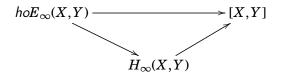
- $X, Y \circlearrowleft G$.
- Can $f \in hoTop(X,Y)$ be lifted to $hoTop_G(X,Y)$?
- If not, why not?



• $(hoTop)_G \simeq$ spaces with G-actions up to homotopy.

Lifting questions The T-algebra SS Genera Comparisons Lifting maps of E_∞ ring spectra

- $X, Y \in E_{\infty}$ ring spectra (Q-CDGA).
- Can $f \in [X, Y]$ be lifted to $hoE_{\infty}(X, Y)$?
- If not, why not?

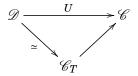


• $H_{\infty} \simeq$ spectra with actions of the E_{∞} -operad up to homotopy. (CommAlg₀)

Genera

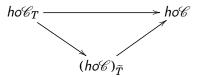
Categorical Setup

- $U: \mathcal{D} \to \mathcal{C}$ monadic. This means:
- U admits left adjoint F.
- T = UF monad on \mathscr{C} .



Lifting questions	The <i>T</i> -algebra SS	Genera	Comparisons
Model Categorical	Setup		

- Now suppose $U: \mathcal{D} \to \mathcal{C}$ simplicial right Quillen.
- \mathscr{C}_T is a simplicial model category.
- Moreover we will ask that U reflects weak equivalences, and commutes with geometric realization of simplicial objects. These are properties we should expect from homotopical monad.
- $\widetilde{T} = \widetilde{U}\widetilde{F}$ monad on $ho\mathscr{C}$.



General question

- Want obstruction theory for lifting maps from $h \mathcal{C}$ or $(h \mathcal{C})_{\widetilde{T}}$ to $h \mathcal{C}_T$.
- Better idea:Compute $\pi_* \mathscr{C}_T(X, Y)$ via a spectral sequence where these approximations appear at some stage.
- Differentials should give obstructions.

Note

All of our mapping spaces are derived.

Genera

T-algebra spectral sequence

Theorem (Johnson-Noel)

If X is resolvable, then there exists a SS satisfying:

$$E_1^{s,t} \Longrightarrow \pi_{t-s} \mathscr{C}_T(X,Y)$$

such that

$$E^{0,0}_1 \cong ho\mathscr{C}(X,Y)$$

$$E_2^{0,0} \cong (ho\mathscr{C})_{\widetilde{T}}(X,Y)$$

Given a basepoint the differentials provide obstructions to lifting f ∈ hoC(X,Y) to hoC_T.

O The edge homomorphism

$$\pi_0 \mathscr{C}_T(X, Y) \to E_2^{0,0} \cong (h \mathscr{C})_{\widetilde{T}}(X, Y)$$
$$\hookrightarrow E_1^{0,0} \cong h \mathscr{C}(X, Y)$$

is the previously mentioned forgetful functor.

Key points

- Spectral sequence abuts to $\pi_* \mathscr{C}_T(X, Y)$. Not a completion.
- We do *not* require \mathscr{C} :
 - to come from an abelian or stable category.
 - to be pointed.
 - to be cofibrantly generated/combinatorial.
 - to be left/right proper.
- We give criteria for the E_2 term to be defined and identifiable with some Quillen cohomology groups.
- In this case we can take our obstructions to lie in the E_2 term.

- X needs to be resolvable with respect to T.
- This implies X is weakly equivalent to an algebra \widetilde{X} which is cofibrant in \mathscr{C} . But the condition is stronger.
- This happens for any X if
 - \mathscr{C}_T is a category of simplicial algebras in some algebraic category in the sense of Quillen. (Algebra over a multi-sorted Lawvere theory on sSet.)
 - \mathscr{C} is a symmetric monoidal model category compatibly tensored with spaces and \mathscr{C}_T is the category of E_n algebras in \mathscr{C} .
 - \mathscr{C}_T is *G*-objects in \mathscr{C} (naive/genuine variants).

Gene<u>ra</u>

Hirzebruch genera

- G grouplike E_{∞} -space.
- $f \in E_{\infty}Top_{*}(G,GL_{1}S) \rightsquigarrow MG$ is an E_{∞} ring spectrum.

Definition

A Hirzebruch genus is map of graded commutative rings

$$[\phi] \colon \pi_* MG \to R_*$$

where $R \in CommAlg_{\mathbb{Q}}$.

Gene<u>ra</u>

Lifting Hirzebruch genera

Question

Does there exist an E_∞ ring spectrum R and $\phi \in E_\infty(MG,R)$ such that $\pi_*\phi = [\phi]?$

Answer

Yes. Always. Moreover, this lift is unique up to homotopy through E_∞ maps and genera are in bijection with H_∞ maps.

Note

Note that if $f: G \to GL_1S$ does not lift to SL_1S (e.g., $j: O \to GL_1S$) then π_*MG is a $\mathbb{Z}/2$ -algebra and there are no genera. So by assumption we have such a lift.

Lifting Hirebruch genera II

- Set $R = HR_*$. The E_∞ Eilenberg-MacLane ring spectrum associated to R_* . This is a choice but the result is independent of the this choice.
- R is \mathbb{Q} -local $\implies E_{\infty}(MG,R) \simeq E_{\infty}(MG_{\mathbb{Q}},R)$.

•
$$\pi_*MG_{\mathbb{Q}} \cong \pi_*MG \otimes \mathbb{Q}.$$

• $[\phi]$ uniquely factors through $\pi_*MG_{\mathbb{Q}}$.

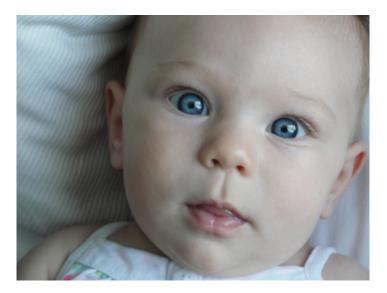
Genera

T-algebra SS for Hirzebruch genera

- $E_2^{0,0} = CommAlg_{\mathbb{Q}}(\pi_*MG_{\mathbb{Q}}, R_*) \ni [\phi].$
- $E_2^{s,t} = HAQ_{R_*}^s(\pi_*MG_{\mathbb{Q}};R_{*+t})$ elsewhere.
- Vanishes for s > 0 if $\pi_* MG_{\mathbb{Q}}$ is a free algebra in *CommAlg*₀.
- In this case there are *no* obstructions to lifting a genus uniquely and our result holds.

T-algebra SS for Hirzebruch genera

- Now $\pi_*MG_{\mathbb{Q}} \cong H_*(MG;\mathbb{Q}) \cong H_*(BG,\mathbb{Q})$ as graded rings.
- $H_*(BG, \mathbb{Q})$ is a bicommutative connected \mathbb{Q} -Hopf algebra.
- By Milnor-Moore this is a free graded commutative Q-algebra.
- And we are done.
- There are similar $E_{\infty} = H_{\infty}$ results for computing maps in the K(n)-local setting.



Goerss-Hopkins spectral sequence

- GHSS \implies homotopy groups of space of E_{∞} maps between spectra.
- Uses Bousfield's E_2 /resolution model structure.
- Designed to give computable E_2 -term in terms of coalgebras.
- They use that the underlying category is proper, stable, and cellular.

Lifting questions

Genera

Comparison with GHSS

Proposition

The two spectral sequences agree when we restrict to computing maps of E_{∞} algebras in Hk-modules for k a field.

Proof.

Easy direct proof or an easy consequence of an argument due to Jennifer French.

Flat resolutions in the non-abelian setting

- In E_2 /resolution model structure we build resolutions with some designated 'cogroup projectives'.
- French's argument says projective is not necessary. Instead just resolve by objects where the corresponding spectral sequences collapse onto the zero line.
- Analogue of using flat resolutions for Tor calculations.

Some 'flat' resolutions

- The free algebra resolutions appearing in bar resolutions are always 'flat' in Hk-modules \implies equivalence between TAlgSS and GHSS in this case.
- Suppose *Y* is nilpotent of finite type.
- By classical computations and a result of Mandell, the Bousfield-Kan resolutions:

$$H\overline{\mathbb{F}}_p^{\mathbb{F}_p^{+1}Y}$$
 and $H\mathbb{Q}^{\mathbb{Q}^{\cdot+1}Y}$

will be 'flat' in our examples.

Lifting questions	The <i>T</i> -algebra SS	Genera	Comparisons
Comparing UA	SS and GHSS		

• This gives a comparison map between

$$UASS \Longrightarrow \pi_* Top(X, Y_{\mathbb{Q}})$$

and

$$\mathrm{GHSS} \Longrightarrow \pi_* E_{\infty}(H\mathbb{Q}^Y, H\mathbb{Q}^X).$$

And their *p*-primary analogues.

Theorem (French)

These maps induce isomophisms between the UASS and the GHSS.

- In characteristic 0, E₂ term consists of André-Quillen cohomology groups in CommAlg₀.
- In characteristic p, E_2 term consists of Quillen cohomology groups in unstable algebras over the Steenrod algebra.

Using spaces to understand E_∞ ring spectra

Some consequences in TAlgSS/GHSS (Bousfield-Kan)

$$\Longrightarrow \pi_* E_{\infty}(H\mathbb{Q}^Y, H\mathbb{Q}^X)$$

- **(**) Whitehead products in π_*Y raise filtration degree.
- e For t > 0 and X connected, spectral sequence only depends on Y_Q and H^{*}(X;Q).
- Omposition product kills elements in positive filtration.
- **4** Massey products in $H^*(Y;\mathbb{Q})$ give rise to differentials.

• Use this to calculate

$$\pi_*K(\mathbb{Z}_p,n)\cong\pi_*E_{\infty}H\overline{\mathbb{F}}_p(H\overline{\mathbb{F}}_p^{K(\mathbb{Z},n)},H\overline{\mathbb{F}}_p).$$

• \implies there exists infinitely many distinct E_{∞} maps inducing the same H_{∞} map (= map of extended DL-algebras).

• Use this to calculate

$$\pi_*K(\mathbb{Z}/p^k,n) \cong \pi_*E_{\infty}H\overline{\mathbb{F}}_p(H\overline{\mathbb{F}}_p^{K(\mathbb{Z}/p^k,n)},H\overline{\mathbb{F}}_p)$$

for k > 1.

 $-1 \ 0 \ \cdots \ n \ n+1 \cdots \ t-s \ -1 \ 0 \ \cdots \ n \ n+1 \cdots \ t-s \ -1 \ 0$ E_2 page for $\pi_* E_{\infty} H \overline{\mathbb{F}}_p(H \overline{\mathbb{F}}_p^{K(\mathbb{Z}/p^k,n)}, H \overline{\mathbb{F}}_p)$ for k > 1. E_k and E_{∞} pages for $\pi_* E_{\infty} H \overline{\mathbb{F}}_p(H \overline{\mathbb{F}}_p^{K(\mathbb{Z}/p^k,n)}, H \overline{\mathbb{F}}_p)$ for k > 1. E_k and E_∞ pages for $\pi_* E_\infty H\overline{\mathbb{F}}_p(H\overline{\mathbb{F}}_n^{K(\mathbb{Z}/p^k,n)}, H\overline{\mathbb{F}}_n^{S^{n+1}})$ for k > 1

• There exists H_{∞} maps that are arbitrarily close to E_{∞} maps UniBonn, MPIM

Lifting questions	The <i>T</i> -algebra SS	Genera	Comparisons
Bockstein spectral	sequence		

- We can now construct Bockstein SS topologically.
- Suppose X is a connected space of finite type.
- Calculate

$$\pi_i(\operatorname{Sym}^{\infty}_*X)_{\widehat{p}} \cong \widetilde{H}_i(X;\mathbb{Z}_p).$$

via the TAlg/GH/UASS computing

$$\pi_*E_\infty H\overline{\mathbb{F}}_p(H\overline{\mathbb{F}}_p^{\operatorname{Sym}^\infty_*X},H\overline{\mathbb{F}}_p).$$

- This is the E_2 -page of a Bockstein spectral sequence computing the reduced homology of X with $d_r = \beta_r$.
- There is a similar construction for the cohomological Bockstein spectral sequence.

To summarize: The Bockstein SS is a special case of the unstable Adams SS, which is a special case of the Goerss-Hopkins SS, which is a special case of the *T*-algebra SS. Through these identifications we obtain information about the

filtration between E_∞ -algebras and E_∞ -algebras up to homotopy.

